Circle packings from tilings of the plane

被引:0
|
作者
Rehwinkel, Philip [1 ]
Whitehead, Ian [1 ]
Yang, David [1 ]
Yang, Mengyuan [1 ]
机构
[1] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
关键词
Circle packing; Apollonian packing; Polyhedral packing; Koebe-Andreev-Thurston theorem;
D O I
10.1007/s00022-024-00715-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new class of fractal circle packings in the plane, generalizing the polyhedral packings defined by Kontorovich and Nakamura. The existence and uniqueness of these packings are guaranteed by infinite versions of the Koebe-Andreev-Thurston theorem. We prove structure theorems giving a complete description of the symmetry groups for these packings. And we give several examples to illustrate their number-theoretic and group-theoretic significance.
引用
收藏
页数:28
相关论文
共 50 条