Strong convergence of Euler-Maruyama schemes for McKean-Vlasov stochastic differential equations under local Lipschitz conditions of state variables

被引:23
|
作者
Li, Yun [1 ]
Mao, Xuerong [2 ]
Song, Qingshuo [3 ]
Wu, Fuke [1 ]
Yin, George [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Univ Strathclyde, Dept Math & Stat, Glasgow City G1 1XH, Scotland
[3] Worcester Polytech Inst, Dept Math, Worcester, MA 01609 USA
[4] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
McKean-Vlasov SDE; one-sided local Lipschitz condition; local Lipschitz condition; interpolated Euler-like sequence; Euler-Maruyama scheme; SDES; GAMES;
D O I
10.1093/imanum/drab107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops strong convergence of the Euler-Maruyama (EM) schemes for approximating McKean-Vlasov stochastic differential equations (SDEs). In contrast to the existing work, a novel feature is the use of a much weaker condition-local Lipschitzian in the state variable, but under uniform linear growth assumption. To obtain the desired approximation, the paper first establishes the existence and uniqueness of solutions of the original McKean-Vlasov SDE using a Euler-like sequence of interpolations and partition of the sample space. Then, the paper returns to the analysis of the EM scheme for approximating solutions of McKean-Vlasov SDEs. A strong convergence theorem is established. Moreover, the convergence rates under global conditions are obtained.
引用
收藏
页码:1001 / 1035
页数:35
相关论文
共 50 条
  • [1] Strong convergence of Euler-Maruyama schemes for doubly perturbed McKean-Vlasov stochastic differential equations
    Wu, Dongxuan
    Zhang, Yaru
    Xu, Liping
    Li, Zhi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 132
  • [2] Euler-Maruyama Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients
    Ding, Xiaojie
    Qiao, Huijie
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (03) : 1408 - 1425
  • [3] THE TAMED EULER-MARUYAMA APPROXIMATION OF MCKEAN-VLASOV STOCHASTIC DIFFERENTIAL EQUATIONS AND ASYMPTOTIC ERROR ANALYSIS
    Liu, H. U. A. G. U., I
    Wu, F. U. K. E.
    Wu, M. I. N. Y. U.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (05): : 952 - 978
  • [4] Tamed Euler-Maruyama approximation of McKean-Vlasov stochastic differential equations with super-linear drift and Holder diffusion coefficients
    Liu, Huagui
    Shi, Banban
    Wu, Fuke
    APPLIED NUMERICAL MATHEMATICS, 2023, 183 : 56 - 85
  • [5] Convergence of the Euler-Maruyama Particle Scheme for a Regularised McKean-Vlasov Equation Arising from the Calibration of Local-Stochastic Volatility Models
    Reisinger, Christoph
    Tsianni, Maria Olympia
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2022, 2024, 460 : 561 - 582
  • [6] Strong convergence of the truncated Euler-Maruyama method for stochastic functional differential equations
    Zhang, Wei
    Song, M. H.
    Liu, M. Z.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (12) : 2363 - 2387
  • [7] Strong convergence of the stopped Euler-Maruyama method for nonlinear stochastic differential equations
    Liu, Wei
    Mao, Xuerong
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 : 389 - 400
  • [8] Strong convergence for the Euler-Maruyama approximation of stochastic differential equations with discontinuous coefficients
    Hoang-Long Ngo
    Taguchi, Dai
    STATISTICS & PROBABILITY LETTERS, 2017, 125 : 55 - 63
  • [9] Euler–Maruyama Approximations for Stochastic McKean–Vlasov Equations with Non-Lipschitz Coefficients
    Xiaojie Ding
    Huijie Qiao
    Journal of Theoretical Probability, 2021, 34 : 1408 - 1425
  • [10] Strong convergence order for slow-fast McKean-Vlasov stochastic differential equations
    Rockner, Michael
    Sun, Xiaobin
    Xie, Yingchao
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (01): : 547 - 576