Position-aware graph neural network for session-based recommendation

被引:9
|
作者
Sang, Sheng [1 ]
Yuan, Weihua [1 ]
Li, Wenxuan [2 ]
Yang, Zhaohui [1 ]
Zhang, Zhijun [1 ]
Liu, Nan [1 ]
机构
[1] Shandong Jianzhu Univ, Sch Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China
[2] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD 21218 USA
基金
中国国家自然科学基金;
关键词
Recommender systems; Session-based recommendation; Position-aware; Graph neural network; ALGORITHM;
D O I
10.1016/j.knosys.2022.110201
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Session-based recommendations (SBRs) make recommendations using the current interaction sequence of users. Recent studies on SBRs have primarily used graph neural networks (GNNs) to model the session sequence; however, such methods treat the same items in a session as a single node, thus ignoring differences between items in different positions. Moreover, they do not use other sessions to learn users' short-term preferences. Therefore, we propose a novel position-aware graph neural network (PA-GNN) for SBRs. First, this model uses a session in the form of a position-aware graph as an input to completely use the position information of the item and apply the attention mechanism to learn users' long-term interests. Second, it combines other sessions to learn the user's short-term preferences. Third, it integrates long-term interests and short-term preferences for predictions. The experimental results using three benchmark e-commerce datasets demonstrate that the PA-GNN model performs excellently and is superior to the latest baselines on SBRs.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] PA-GGAN: SESSION-BASED RECOMMENDATION WITH POSITION-AWARE GATED GRAPH ATTENTION NETWORK
    Wang, Jinshan
    Xu, Qianfang
    Lei, Jiahuan
    Lin, Chaoqun
    Xiao, Bo
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [2] Position-aware context attention for session-based recommendation
    Cao, Yi
    Zhang, Weifeng
    Song, Bo
    Pan, Weike
    Xu, Congfu
    NEUROCOMPUTING, 2020, 376 : 65 - 72
  • [3] A Time-Aware Graph Neural Network for Session-Based Recommendation
    Guo, Yupu
    Ling, Yanxiang
    Chen, Honghui
    IEEE ACCESS, 2020, 8 : 167371 - 167382
  • [4] Relevance-aware graph neural network for session-based recommendation
    Zeng, Yaohai
    Yang, Bo
    Wen, Xiangchao
    Li, Dongsheng
    COMPUTING, 2023, 105 (10) : 2311 - 2335
  • [5] Sequence-Aware Graph Neural Network for Session-based Recommendation
    Huang, Zhencheng
    Wu, Dehao
    Weng, Zhenyu
    Zhu, Yuesheng
    Bai, Zhiqiang
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] Relevance-aware graph neural network for session-based recommendation
    Yaohai Zeng
    Bo Yang
    Xiangchao Wen
    Dongsheng Li
    Computing, 2023, 105 : 2311 - 2335
  • [7] Category-aware Graph Neural Network for Session-based Recommendation
    Chen, Runfeng
    Zhu, Yanmin
    Ma, Peibo
    Chen, Qiuxia
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 891 - 899
  • [8] Intention-aware denoising graph neural network for session-based recommendation
    Shanshan Hua
    Mingxin Gan
    Applied Intelligence, 2023, 53 : 23097 - 23112
  • [9] Intention-aware denoising graph neural network for session-based recommendation
    Hua, Shanshan
    Gan, Mingxin
    APPLIED INTELLIGENCE, 2023, 53 (20) : 23097 - 23112
  • [10] Enhanced graph neural network for session-based recommendation
    Sheng, Zhenzhen
    Zhang, Tao
    Zhang, Yuejie
    Gao, Shang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213