Multi-objective optimization of supercritical CO2 Brayton cycles for coal-fired power generation with two waste heat recovery schemes

被引:7
|
作者
Liang, Yingzong [1 ,2 ]
Chen, Wei [1 ,3 ]
Luo, Xianglong [1 ,2 ]
Chen, Jianyong [1 ,2 ]
Yang, Zhi [1 ,2 ]
Chen, Ying [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou, Peoples R China
[2] Guangdong Univ Technol, Guangdong Prov Key Lab Funct Soft Matter, Guangzhou, Peoples R China
[3] GD Midea HVAC Heating & Ventilat Equipment Co Ltd, Foshan, Peoples R China
基金
中国国家自然科学基金;
关键词
Waste-heat utilization; Multi-objective optimization; Coal-fired power generation; CONCEPTUAL DESIGN; PLANT; EFFICIENCY; CAPTURE; SYSTEM; WATER; PCHE;
D O I
10.1016/j.enconman.2023.117962
中图分类号
O414.1 [热力学];
学科分类号
摘要
The efficiency of supercritical CO2 (sCO2) Brayton cycle (SCBC) based coal-fired power generation can be enhanced by harnessing the waste heat from sCO2 cooling and flue gas, which currently remains largely untapped. In this paper, we propose two types of design roadmap for utilizing this waste heat. The first method involves using an organic Rankine cycle (ORC) to generate additional power, while the second method utilizes LiBr/H2O absorption refrigeration cycle (ARC) to further cool down compressor inlet sCO2, and thereby reduces its compression power consumption. An energy-economic-environmental multi-criteria models are formulated to access performance of the aforementioned designs and compare them with a standalone sCO2 Brayton recompression cycle system (Standalone). The non-dominated sorting genetic algorithm II is applied to carry out the multi-objective optimization of the three systems. The results show that the SCBC-ARC system achieves the maximum thermal efficiency (eta th) and minimum environmental impact load (EIL), while SCBC-ORC system achieves the minimum levelized cost of electricity (LCOE). We also find that minimizing LCOE conflicts with maximizing eta th and minimizing EIL, respectively. The relationship between maximizing eta th and minimizing EIL is consistent, suggesting that increasing efficiency will alleviate environmental impact of the systems. We also identify and discuss balanced designs for the systems, and our results show that the eta th of SCBC-ORC and SCBCARC is 1.40% and 1.70% higher than the Standalone, respectively, the LCOE is 0.56% lower and 3.66% higher than Standalone, respectively, and EIL is 1.16% and 1.59% lower than the Standalone, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Supercritical CO2 Brayton cycles for coal-fired power plants
    Mecheri, Mounir
    Le Moullec, Yann
    ENERGY, 2016, 103 : 758 - 771
  • [2] MULTI OBJECTIVE OPTIMIZATION OF FLEXIBLE SUPERCRITICAL CO2 COAL-FIRED POWER PLANTS
    Alfani, Dario
    Astolfi, Marco
    Binotti, Marco
    Campanari, Stefano
    Casella, Francesco
    Silva, Paolo
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 3, 2019,
  • [3] Multi-objective optimization and evaluation of supercritical CO2 Brayton cycle for nuclear power generation
    Yu, Guo-Peng
    Cheng, Yong-Feng
    Zhang, Na
    Ming, Ping-Jian
    NUCLEAR SCIENCE AND TECHNIQUES, 2024, 35 (02)
  • [4] Multi-objective optimization and evaluation of supercritical CO2 Brayton cycle for nuclear power generation
    Guo-Peng Yu
    Yong-Feng Cheng
    Na Zhang
    Ping-Jian Ming
    Nuclear Science and Techniques, 2024, 35
  • [5] Multi-objective optimization and evaluation of supercritical CO2 Brayton cycle for nuclear power generation
    Guo-Peng Yu
    Yong-Feng Cheng
    Na Zhang
    Ping-Jian Ming
    Nuclear Science and Techniques, 2024, 35 (02) : 32 - 58
  • [6] Thermodynamic and Economic Analysis and Multi-objective Optimization of Supercritical CO2 Brayton Cycles
    Zhao, Hang
    Deng, Qinghua
    Huang, Wenting
    Wang, Dian
    Feng, Zhenping
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2016, 138 (08):
  • [7] Study on performances of supercritical CO2 recompression Brayton cycles with multi-objective optimization
    Deng, Q. H.
    Wang, D.
    Zhao, H.
    Huang, W. T.
    Shao, S.
    Feng, Z. P.
    APPLIED THERMAL ENGINEERING, 2017, 114 : 1335 - 1342
  • [8] THERMODYNAMIC AND ECONOMIC ANALYSIS AND MULTI-OBJECTIVE OPTIMIZATION OF SUPERCRITICAL CO2 BRAYTON CYCLES
    Zhao, Hang
    Deng, Qinghua
    Huang, Wenting
    Feng, Zhenping
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 9, 2015,
  • [9] Multi-objective optimization of coal-fired electricity production with CO2 capture
    Cristobal, Jorge
    Guillen-Gosalbez, Gonzalo
    Jimenez, Laureano
    Irabien, Angel
    APPLIED ENERGY, 2012, 98 : 266 - 272
  • [10] Multi-objective optimization of coal-fired electricity production with CO2 capture
    Cristobal, Jorge
    Guillen-Gosalbez, Gonzalo
    Jimenez, Laureano
    Irabien, Angel
    22 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2012, 30 : 277 - 281