Variations in the Tensorial Trapezoid Type Inequalities for Convex Functions of Self-Adjoint Operators in Hilbert Spaces

被引:5
|
作者
Stojiljkovic, Vuk [1 ]
Mirkov, Nikola [2 ]
Radenovic, Stojan [3 ]
机构
[1] Univ Novi Sad, Fac Sci, Trg Dositeja Obradovica 3, Novi Sad 21000, Serbia
[2] Univ Belgrade, Vinca Inst Nucl Sci, Natl Inst Republ Serbia, Mike Petrovica Alasa 12-14, Belgrade 11351, Serbia
[3] Univ Belgrade, Fac Mech Engn, Kraljice Marije 16, Belgrade 11120, Serbia
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 01期
关键词
tensorial product; self-adjoint operators; convex functions; HERMITE-HADAMARD;
D O I
10.3390/sym16010121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, various tensorial inequalities of trapezoid type were obtained. Identity from classical analysis is utilized to obtain the tensorial version of the said identity which in turn allowed us to obtain tensorial inequalities in Hilbert space. The continuous functions of self-adjoint operators in Hilbert spaces have several tensorial norm inequalities discovered in this study. The convexity features of the mapping f lead to the variation in several inequalities of the trapezoid type.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Choi–Davis–Jensen’s type trace inequalities for convex functions of self-adjoint operators in Hilbert spaces
    Hosna Jafarmanesh
    Tayebeh Lal Shateri
    Silvestru Sever Dragomir
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 1195 - 1215
  • [2] Choi-Davis-Jensen's type trace inequalities for convex functions of self-adjoint operators in Hilbert spaces
    Jafarmanesh, Hosna
    Shateri, Tayebeh Lal
    Dragomir, Silvestru Sever
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 1195 - 1215
  • [3] Some Vector Inequalities for Continuous Functions of Self-Adjoint Operators in Hilbert Spaces
    SS Dragomir
    Journal of Inequalities and Applications, 2011
  • [4] Some Vector Inequalities for Continuous Functions of Self-Adjoint Operators in Hilbert Spaces
    Dragomir, S. S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [5] Tensorial and Hadamard product integral inequalities for convex functions of continuous fields of operators in Hilbert spaces
    Dragomir, Silvestru Sever
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2025, 54 (01): : 115 - 124
  • [6] Some Quantum f-divergence Inequalities for Convex Functions of Self-adjoint Operators
    Taghavi, A.
    Darvish, V
    Nazari, H. M.
    Dragomir, S. S.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (01): : 125 - 139
  • [7] Singularly perturbed self-adjoint operators in scales of Hilbert spaces
    Albeverio S.
    Kuzhel' S.
    Nizhnik L.
    Ukrainian Mathematical Journal, 2007, 59 (6) : 787 - 810
  • [8] SOME SLATER TYPE INEQUALITIES FOR CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES
    Dragomir, S. S.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2011, 52 (01): : 109 - 120
  • [9] SELF-ADJOINT OPERATORS ON HILBERT SPACE
    REDHEFFE.RM
    EMBRY, MR
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09): : 1031 - &
  • [10] ENTROPY NUMBERS FOR NONCOMPACT SELF-ADJOINT OPERATORS IN HILBERT-SPACES
    EDMUNDS, DE
    TRIEBEL, H
    MATHEMATISCHE NACHRICHTEN, 1981, 100 : 213 - 219