A Swin-transformer-based model for efficient compression of turbulent flow data
被引:4
|
作者:
Zhang, Meng
论文数: 0引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Sch Mech Engn, Busan 46241, South KoreaPusan Natl Univ, Sch Mech Engn, Busan 46241, South Korea
Zhang, Meng
[1
]
Yousif, Mustafa Z.
论文数: 0引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Sch Mech Engn, Busan 46241, South Korea
LSTME, Busan Branch, German Engn Res & Dev Ctr, Busan 46742, South KoreaPusan Natl Univ, Sch Mech Engn, Busan 46241, South Korea
Yousif, Mustafa Z.
[1
,2
]
Yu, Linqi
论文数: 0引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Sch Mech Engn, Busan 46241, South KoreaPusan Natl Univ, Sch Mech Engn, Busan 46241, South Korea
Yu, Linqi
[1
]
Lim, Hee-Chang
论文数: 0引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Sch Mech Engn, Busan 46241, South KoreaPusan Natl Univ, Sch Mech Engn, Busan 46241, South Korea
Lim, Hee-Chang
[1
]
机构:
[1] Pusan Natl Univ, Sch Mech Engn, Busan 46241, South Korea
[2] LSTME, Busan Branch, German Engn Res & Dev Ctr, Busan 46742, South Korea
DIRECT NUMERICAL-SIMULATION;
WIND;
ALGORITHMS;
PREDICTION;
D O I:
10.1063/5.0160755
中图分类号:
O3 [力学];
学科分类号:
08 ;
0801 ;
摘要:
This study proposes a novel deep-learning-based method for generating reduced representations of turbulent flows that ensures efficient storage and transfer while maintaining high accuracy during decompression. A Swin-transformer (ST) network combined with a physical constraints-based loss function is utilized to compress the turbulent flows with high compression ratios and then restore the data with underlying physical properties. The forced isotropic turbulence is used to demonstrate the ability of the ST-based model, where the instantaneous and statistical results show the excellent ability of the model to recover the flow data with a remarkable accuracy. Furthermore, the capability of the ST model is compared with a typical convolutional neural network-based auto-encoder (CNN-AE) by using the turbulent channel flow at two friction Reynolds numbers Re-tau = 180 and 550. The results generated by the ST model are significantly more consistent with the direct numerical simulation data than those recovered by the CNN-AE, indicating the superior ability of the ST model to compress and restore the turbulent flow. This study also compares the compression performance of the ST model at different compression ratios (CR s) and finds that the model has low enough error even at very high CR. Additionally, the effect of transfer learning (TL) is investigated, showing that TL reduces the training time by 64% while maintaining high accuracy. The results illustrate for the first time that the Swin-transformer-based model incorporating a physically constrained loss function can compress and restore turbulent flows with the correct physics. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/).
机构:
Southeast Univ, Sch Transportat, Dept Port Waterway & Coastal Engn, Nanjing 210096, Peoples R ChinaSoutheast Univ, Sch Transportat, Dept Port Waterway & Coastal Engn, Nanjing 210096, Peoples R China
Tan, Weikai
Yuan, Caihao
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Transportat, Dept Port Waterway & Coastal Engn, Nanjing 210096, Peoples R ChinaSoutheast Univ, Sch Transportat, Dept Port Waterway & Coastal Engn, Nanjing 210096, Peoples R China
Yuan, Caihao
Xu, Sudong
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Transportat, Dept Port Waterway & Coastal Engn, Nanjing 210096, Peoples R ChinaSoutheast Univ, Sch Transportat, Dept Port Waterway & Coastal Engn, Nanjing 210096, Peoples R China
Xu, Sudong
Xu, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, State Key Lab Estuarine & Coastal Res, Shanghai 200241, Peoples R ChinaSoutheast Univ, Sch Transportat, Dept Port Waterway & Coastal Engn, Nanjing 210096, Peoples R China
Xu, Yuan
Stocchino, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R ChinaSoutheast Univ, Sch Transportat, Dept Port Waterway & Coastal Engn, Nanjing 210096, Peoples R China
机构:
Southeast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R ChinaSoutheast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R China
Wang, Zhongyu
Ma, Caiyun
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R ChinaSoutheast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R China
Ma, Caiyun
Zhang, Shuo
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R China
Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R ChinaSoutheast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R China
Zhang, Shuo
Li, Yuwen
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R ChinaSoutheast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R China
Li, Yuwen
Zhao, Lina
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R ChinaSoutheast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R China
Zhao, Lina
Li, Jianqing
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R ChinaSoutheast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R China
Li, Jianqing
Liu, Chengyu
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R ChinaSoutheast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, 2 Sipailou, Nanjing 210096, Peoples R China
机构:
Cent South Univ, Sch Humanities, Changsha 410012, Peoples R China
Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R ChinaCent South Univ, Sch Humanities, Changsha 410012, Peoples R China
Zhu, Chengzhang
Chai, Xian
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R ChinaCent South Univ, Sch Humanities, Changsha 410012, Peoples R China
Chai, Xian
Xiao, Yalong
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Humanities, Changsha 410012, Peoples R ChinaCent South Univ, Sch Humanities, Changsha 410012, Peoples R China
Xiao, Yalong
Liu, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Affiliated Canc Hosp, Xiangya Sch Med, Dept Med Ultrasound,Hunan Canc Hosp, Changsha 410031, Peoples R ChinaCent South Univ, Sch Humanities, Changsha 410012, Peoples R China
Liu, Xu
Zhang, Renmao
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R ChinaCent South Univ, Sch Humanities, Changsha 410012, Peoples R China
Zhang, Renmao
Yang, Zhangzheng
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R ChinaCent South Univ, Sch Humanities, Changsha 410012, Peoples R China
Yang, Zhangzheng
Wang, Zhiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Affiliated Canc Hosp, Xiangya Sch Med, Dept Med Ultrasound,Hunan Canc Hosp, Changsha 410031, Peoples R ChinaCent South Univ, Sch Humanities, Changsha 410012, Peoples R China