A pixel-level deep segmentation network for automatic defect detection

被引:17
|
作者
Yang, Lei [2 ]
Xu, Shuai
Fan, Junfeng [3 ]
Li, En [3 ]
Liu, Yanhong [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Robot Percept & Control Engn Lab, Zhengzhou 450001, Henan, Peoples R China
[3] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst c, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Defect detection; Deep convolutional neural network; U-shape network; ConvLSTM network; SURFACE-DEFECTS; INSPECTION; RECONSTRUCTION; SYSTEM;
D O I
10.1016/j.eswa.2022.119388
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Defect detection is a very important link for much manufacturing and processing applications which could be used for quality control and precise maintenance decision. However, faced with the weak-texture and low-contrast industrial environment, high-precision defect detection still faces a certain challenge due to diverse and complex of defects. Meanwhile, due to a minimal portion image pixels of defects, the pixel-level defect detection task is always against class-unbalance issue which also will affect the detection performance. Recently, with the strong automatic feature representation ability, deep learning has shown an excellent detection performance on defect identification and location. Nevertheless, it still has some demerits, such as insufficient processing of feature maps, lack of temporal modeling information, etc. To address these issues, on the basis of the encoder-decoder architecture, a pixel-level deep segmentation network is proposed for automatic defect detection to construct an end-to-end defect segmentation model. To realize effective feature representation, a residual attention network is proposed to construct the backbone network, which could also make the segmentation network better emphasize target regions. Meanwhile, to improve the network propagation ability of subtle context features, a bidirectional convolutional long short-term memory (ConvLSTM) block is introduced to optimize the skip connections to learn long-range spatial contexts. Besides, a weighted loss function is proposed for model training to address the class-unbalance issue. Combined with multiple public data sets, through qualitative and quantitative analysis, experimental results demonstrate that the proposed defect segmentation network achieves a better performance compared to other state-of-the-art segmentation methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An Automatic Deep Segmentation Network for Pixel-Level Welding Defect Detection
    Yang, Lei
    Song, Shouan
    Fan, Junfeng
    Huo, Benyan
    Li, En
    Liu, Yanhong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [2] A Pixel-Level Segmentation Convolutional Neural Network Based on Deep Feature Fusion for Surface Defect Detection
    Cao, Jingang
    Yang, Guotian
    Yang, Xiyun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [3] Automatic sewer defect detection and severity quantification based on pixel-level semantic segmentation
    Zhou, Qianqian
    Situ, Zuxiang
    Teng, Shuai
    Liu, Hanlin
    Chen, Weifeng
    Chen, Gongfa
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2022, 123
  • [4] APLCNet: Automatic Pixel-Level Crack Detection Network Based on Instance Segmentation
    Zhang, Yuefei
    Chen, Bin
    Wang, Jinfei
    Li, Jianming
    Sun, Xiaofei
    IEEE ACCESS, 2020, 8 : 199159 - 199170
  • [5] An adaptive feature refinement network for pixel-level segmentation of surface defect
    Zhang, Yuzhong
    Ge, Wenhao
    Liu, Shiyang
    Wang, Jiazheng
    Hu, Haibing
    Dong, Jingtao
    Zhang, Tengda
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [6] Automatic Pixel-Level Crack Detection on Dam Surface Using Deep Convolutional Network
    Feng, Chuncheng
    Zhang, Hua
    Wang, Haoran
    Wang, Shuang
    Li, Yonglong
    SENSORS, 2020, 20 (07)
  • [7] Modeling automatic pavement crack object detection and pixel-level segmentation
    Du, Yuchuan
    Zhong, Shan
    Fang, Hongyuan
    Wang, Niannian
    Liu, Chenglong
    Wu, Difei
    Sun, Yan
    Xiang, Mang
    AUTOMATION IN CONSTRUCTION, 2023, 150
  • [8] Improved Pixel-Level Pavement-Defect Segmentation Using a Deep Autoencoder
    Augustauskas, Rytis
    Lipnickas, Arunas
    SENSORS, 2020, 20 (09)
  • [9] SCCDNet: A Pixel-Level Crack Segmentation Network
    Li, Haotian
    Yue, Zhuang
    Liu, Jingyu
    Wang, Yi
    Cai, Huaiyu
    Cui, Kerang
    Chen, Xiaodong
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [10] A Pixel-Level Segmentation Convolutional Neural Network Based on Global and Local Feature Fusion for Surface Defect Detection
    Zuo, Lei
    Xiao, Hongyong
    Wen, Long
    Gao, Liang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72