Construction of MXene-enhanced rigid polyurethane foam/polyethylene glycol phase change composites for solar thermal conversion and storage

被引:9
|
作者
Zhang, Xiaolei [1 ,2 ]
Wang, Fumin [1 ]
He, Lin [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Chem, Tianjin 300072, Peoples R China
[2] DuPont China Holding Co Ltd, Shanghai Branch, Shanghai 201203, Peoples R China
关键词
Polyurethane foam; Phase change material; MXene; Solar to thermal conversion; ENCAPSULATION;
D O I
10.1016/j.conbuildmat.2024.134949
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, various rigid polyurethanes foams (PUFs) with different morphologies were prepared and subsequently used for encapsulating the phase change material, polyethylene glycol (PEG). To address the low photothermal conversion efficiency of polyurethane -based phase change materials, MXene was successfully synthesized via an in -situ hydrofluoric acid (HF) etching method and incorporated into the PEG to obtain MXene@PEG composite material. Finally, a series of innovative MXene@PEG-PUF phase change composites were successfully fabricated by utilizing PUFs as the supporting matrix and the MXene@PEG composite as the phase change component through a vacuum impregnation technique, and their thermophysical properties and photothermal conversion performance were systematically studied. The results show that PUF is the ideal capsulation material for PEG. And MXene@PEG-PUF demonstrates a high PCM loading rate (>80 wt%) and a high latent heat storage enthalpy (>140 J/g) with a relative enthalpy efficiency of 99.5%, maintaining excellent shape stability and relative enthalpy efficiency of 95.58% after 150 thermal cycles. This highlights its superior thermal reliability, making it suitable for practical building energy -saving applications. Most importantly, the incorporation of MXene into PUF@PEG significantly enhances solar -to -thermal conversion capability, attributed to the exceptional photothermal characteristics of MXene.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Construction of MXene-enhanced rigid polyurethane foam/polyethylene glycol phase change composites for solar thermal conversion and storage (vol 413, 134949, 2024)
    Zhang, Xiaolei
    Wang, Fumin
    He, Lin
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 415
  • [2] Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion
    Du, Yu
    Huang, Haowei
    Hu, Xinpeng
    Liu, Shuang
    Sheng, Xinxin
    Li, Xiaolong
    Lu, Xiang
    Qu, Jinping
    RENEWABLE ENERGY, 2021, 171 : 1 - 10
  • [3] Waterborne Polydopamine-Polyurethane/Polyethylene Glycol-Based Phase Change Films for Solar-to-Thermal Energy Conversion and Storage
    Tas, Cuneyt Erdinc
    Berksun, Ekin
    Koken, Deniz
    Kolgesiz, Sarp
    Unal, Serkan
    Unal, Hayriye
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (41) : 14788 - 14800
  • [4] Polyethylene glycol/expanded graphite phase change composites for thermal storage
    Zhao, Jian-Guo
    Guo, Quan-Gui
    Liu, Lang
    Wei, Xing-Hai
    Zhang, Jin-Xi
    Xiandai Huagong/Modern Chemical Industry, 2008, 28 (09): : 46 - 47
  • [5] Polyethylene glycol/modified carbon foam composites for efficient light-thermal conversion and storage
    Lin, Fankai
    Zhang, Xiaoguang
    Liu, Xianjie
    Xu, Yunfei
    Sun, Zhenhua
    Zhang, Liangpei
    Huang, Zhaohui
    Mi, Ruiyu
    Min, Xin
    POLYMER, 2021, 228
  • [6] Thermally induced flexible phase change composites with enhanced thermal conductivity for solar thermal conversion and storage
    Bing, Naici
    Wu, Guanzheng
    Yang, Jie
    Chen, Lifei
    Xie, Huaqing
    Yu, Wei
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 240
  • [7] MXene-enhanced nanofluids for superior thermal energy storage in concentrated solar power plants
    Pineda, Fabiola
    Zambrano, Dario F.
    Lasanta, Maria Isabel
    Guzman, Danny
    Angel, Alejandro
    Palay, Francisco
    Rios, Paulina
    Gonzalez, Rafael I.
    Ramirez, Max
    Rogan, Jose
    Valdivia, Juan Alejandro
    Perez, Francisco Javier
    Rosenkranz, Andreas
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 283
  • [8] MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity
    Sheng, Xinxin
    Dong, Dexuan
    Lu, Xiang
    Zhang, Li
    Chen, Ying
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 138
  • [9] MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity
    Sheng, Xinxin
    Dong, Dexuan
    Lu, Xiang
    Zhang, Li
    Chen, Ying
    Composites Part A: Applied Science and Manufacturing, 2020, 138
  • [10] Thermally Conductive and Shape-Stabilized Polyethylene Glycol/Carbon Foam Phase-Change Composites for Thermal Energy Storage
    Lin, Fankai
    Zhang, Weiyi
    Shi, Tengteng
    Lv, Zhenfei
    Min, Xin
    Fang, Minghao
    Wu, Xiaowen
    Liu, Yan'gai
    Huang, Zhaohui
    CHEMISTRYSELECT, 2020, 5 (11): : 3217 - 3224