Deep Learning Based Coded Over-the-Air Computation for Personalized Federated Learning

被引:2
|
作者
Chen, Danni [1 ,2 ]
Lei, Ming [1 ,2 ]
Zhao, Ming-Min [1 ,2 ]
Liu, An [1 ,2 ]
Sheng, Sikai [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Prov Key Lab Informat Proc Commun & Netw, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Personalized federated learning; over-the-air computation; deep learning; joint source-channel coding;
D O I
10.1109/VTC2023-Fall60731.2023.10333645
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is an edge learning framework that has received significant attention recently. However, the cost of communication has become a major challenge for FL as the number of edge devices grows and the complexity of training models increases. Besides, data samples across all edge devices are usually not independent and identically distributed (non-IID), posing additional challenges to the convergence and model accuracy of FL. Therefore, we propose a novel personalized FL framework based on deep coded over-the-air computation, named DipFL. In this framework, we design a deep AirComp aggregation (DACA) module for n-to-1 information aggregation. Besides, a joint source-channel coding (JSCC) module is designed based on the variational auto-encoder (VAE) model, which not only encodes the transmitted data, but also reduces the bias of local samples by introducing certain regularisation terms. In addition, we propose a personalized mix module that allows local models to be more personalized by mixing the global model and the local models. Simulation results confirm that the proposed DipFL framework is able to significantly reduce the amount of transmitted data, while improving FL performance especially at low signal-to-noise regimes.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Coded Over-the-Air Computation for Model Aggregation in Federated Learning
    Zhang, Naifu
    Tao, Meixia
    Wang, Jia
    Shao, Shuo
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (01) : 160 - 164
  • [2] Over-the-Air Computation Assisted Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Luo, Xiliang
    Zhou, Yong
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5940 - 5945
  • [3] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [4] OVER-THE-AIR PERSONALIZED FEDERATED LEARNING
    Sami, Hasin Us
    Guler, Basak
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8777 - 8781
  • [5] Over-the-Air Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Shan, Hangguan
    Wu, Liantao
    Tian, Xiaohua
    Shi, Yuanming
    Zhou, Yong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 5006 - 5021
  • [6] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [7] Over-the-Air Computation for Vertical Federated Learning
    Zeng, Xiangyu
    Xia, Shuhao
    Yang, Kai
    Wu, Youlong
    Shi, Yuanming
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 788 - 793
  • [8] On the Differential Privacy in Federated Learning Based on Over-the-Air Computation
    Park, Sangjun
    Choi, Wan
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4269 - 4283
  • [9] Asynchronous Federated Learning via Over-the-air Computation
    Zheng, Zijian
    Deng, Yansha
    Liu, Xiaonan
    Nallanathan, Arumugam
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1345 - 1350
  • [10] Federated Edge Learning With Misaligned Over-the-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 3951 - 3964