Jinyinqingre Oral Liquid alleviates LPS-induced acute lung injury by inhibiting the NF-κB/NLRP3/GSDMD pathway

被引:8
|
作者
Wang, Shuhui [1 ]
Lei, Pan [1 ,3 ]
Feng, Ying [2 ]
Jiang, Mingzhu [1 ]
Liu, Zegan [1 ]
Shen, Ting [1 ]
Ma, Shinan [2 ]
Wang, Libo [1 ]
Guo, Xingrong [2 ]
Du, Shiming [1 ]
机构
[1] Hubei Univ Med, Taihe Hosp, Sch Pharmaceut Sci, Hubei Key Lab Wudang Local Chinese Med Res, Shiyan 442000, Peoples R China
[2] Hubei Univ Med, Taihe Hosp, Dept Neurosurg, Hubei Key Lab Embryon Stem Cell Res, Shiyan 442000, Peoples R China
[3] Hubei Univ Med, Taihe Hosp, Hubei Prov Clin Res Ctr Umbil Cord Blood Hematopo, Shiyan 442000, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Jinyinqingre oral liquid; Acute lung injury; Lipopolysaccharide; Inflammation; NF-?B/NLRP3/GSDMD pathway; RESPIRATORY-DISTRESS-SYNDROME; PYROPTOSIS; INFLAMMASOME; PROTECTS; FEATURES;
D O I
10.1016/S1875-5364(23)60397-8
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
Acute lung injury (ALI) is a prevalent and severe clinical condition characterized by inflammatory damage to the lung endothelial and epithelial barriers, resulting in high incidence and mortality rates. Currently, there is a lack of safe and effective drugs for the treatment of ALI. In a previous clinical study, we observed that Jinyinqingre oral liquid (JYQR), a Traditional Chinese Medicine formulation prepared by the Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, exhibited notable efficacy in treating inflammation-related hepatitis and cholecystitis in clinical settings. However, the potential role of JYQR in ALI/acute respiratory distress syndrome (ARDS) and its anti-inflammatory mechanism remains unexplored. Thus, the present study aimed to investigate the therapeutic effects and underlying molecular mechanisms of JYQR in ALI using a mouse model of lipopolysaccharide (LPS)-induced ALI and an in vitro RAW264.7 cell model. JYQR yielded substantial improvements in LPS-induced histological alterations in lung tissues. Additionally, JYQR administration led to a noteworthy reduction in total protein levels within the BALF, a decrease in MPAP, and attenuation of pleural thickness. These findings collectively highlight the remarkable efficacy of JYQR in mitigating the deleterious effects of LPS-induced ALI. Mechanistic investigations revealed that JYQR pretreatment significantly inhibited NF-?B activation and downregulated the expressions of the downstream proteins, namely NLRP3 and GSDMD, as well as proinflammatory cytokine levels in mice and RAW2647 cells. Consequently, JYQR alleviated LPS-induced ALI by inhibiting the NF-?B/NLRP3/ GSDMD pathway. JYQR exerts a protective effect against LPS-induced ALI in mice, and its mechanism of action involves the down-regulation of the NF-?B/NLRP3/GSDMD inflammatory pathway.
引用
收藏
页码:423 / 435
页数:13
相关论文
共 50 条
  • [1] Jinyinqingre Oral Liquid alleviates LPS-induced acute lung injury by inhibiting the NF-κB/NLRP3/GSDMD pathway
    WANG Shuhui
    LEI Pan
    FENG Ying
    JIANG Mingzhu
    LIU Zegan
    SHEN Ting
    MA Shinan
    WANG Libo
    GUO Xingrong
    DU Shiming
    Chinese Journal of Natural Medicines, 2023, 21 (06) : 423 - 435
  • [2] Genipin alleviates LPS-induced acute lung injury by inhibiting NF-κB and NLRP3 signaling pathways
    Zhang, Ao
    Wang, Shiji
    Zhang, Jing
    Wu, Hui
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2016, 38 : 115 - 119
  • [3] Metformin Alleviates LPS-Induced Acute Lung Injury by Regulating the SIRT1/NF-κB/NLRP3 Pathway and Inhibiting Endothelial Cell Pyroptosis
    Zhang, Yunqian
    Zhang, Hui
    Li, Siyuan
    Huang, Kai
    Jiang, Lai
    Wang, Yan
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [4] Therapeutic effects of silibinin on LPS-induced acute lung injury by inhibiting NLRP3 and NF-κB signaling pathways
    Tian, Lin
    Li, Weimin
    Wang, Tan
    MICROBIAL PATHOGENESIS, 2017, 108 : 104 - 108
  • [5] Protective Effect of Amygdalin on LPS-Induced Acute Lung Injury by Inhibiting NF-κB and NLRP3 Signaling Pathways
    Ao Zhang
    Weiyun Pan
    Juan Lv
    Hui Wu
    Inflammation, 2017, 40 : 745 - 751
  • [6] Protective Effect of Amygdalin on LPS-Induced Acute Lung Injury by Inhibiting NF-κB and NLRP3 Signaling Pathways
    Zhang, Ao
    Pan, Weiyun
    Lv, Juan
    Wu, Hui
    INFLAMMATION, 2017, 40 (03) : 745 - 751
  • [7] Exploring the mechanism of LPS-induced acute lung injury based on the METTL3/NF-κB/NLRP3 pathway
    Wang, Hui
    Qiao, Lujun
    Zhang, Xuezhong
    Liu, Jian
    Cui, Wenjuan
    Mou, Lin
    Yang, Guanghu
    Xing, Luchuan
    Zhang, Zhaolong
    Wang, Heng
    MINERVA SURGERY, 2024,
  • [8] Silybin attenuates LPS-induced lung injury in mice by inhibiting NF-κB signaling and NLRP3 activation
    Zhang, Bo
    Wang, Bing
    Cao, Shuhua
    Wang, Yongqiang
    Wu, Di
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2017, 39 (05) : 1111 - 1118
  • [9] Apelin-13 Administration Protects Against LPS-Induced Acute Lung Injury by Inhibiting NF-κB Pathway and NLRP3 Inflammasome Activation
    Zhang, Hailin
    Chen, Sha
    Zeng, Meichun
    Lin, Daopeng
    Wang, Yu
    Wen, Xunhang
    Xu, Changfu
    Yang, Li
    Fan, Xiaofang
    Gong, Yongsheng
    Zhang, Hongyu
    Kong, Xiaoxia
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 49 (05) : 1918 - 1932
  • [10] Harmine alleviates LPS-induced acute lung injury by inhibiting CSF3-mediated MAPK/NF-κB signaling pathway
    Zhai, Yihui
    Chen, Kejie
    Xu, Zichuang
    Chen, Xiaojian
    Tong, Jiaying
    He, Yeying
    Chen, Chaoyue
    Ding, Meiqing
    Liang, Guang
    Zheng, Xiaohui
    RESPIRATORY RESEARCH, 2025, 26 (01)