Hyper K1,r and sub-K1,r fault tolerance of star graphs

被引:4
|
作者
Yang, Yuxing [1 ,2 ]
Hua, Xiaohui [1 ]
Yang, Lulu [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Henan Engn Lab Big Data & Stat Anal & Optimal Cont, Xinxiang 453007, Henan, Peoples R China
关键词
Interconnection network; Star graph; Structure connectivity; Substructure connectivity; Hyper structure connectivity; STRUCTURE CONNECTIVITY; SUBSTRUCTURE CONNECTIVITY;
D O I
10.1016/j.dam.2023.06.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a connected subgraph H of an interconnection network G, the H-structure connectivity & kappa;(G; H) and the H-substructure connectivity & kappa;s(G; H) of G are two important measurements for fault tolerance of G. The n-dimensional star graph Sn is an attractive interconnection network candidate for multiprocessor systems, and it is (n - 1)-regular. Let n & GE; 4 and 0 < r < n - 1. In this paper, we prove that (i) & kappa;(Sn; K1,r) = & kappa;s(Sn; K1,r) = n - 1, and (ii) the removal of any minimum K1,r-cut (or, minimum sub-K1,r-cut) will split Sn into exactly two components, one of which is a singleton, where K1,r is a tree on 1+ r vertices, r of which are leaves. The main results generalize some known ones.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:172 / 177
页数:6
相关论文
共 50 条
  • [1] HAMILTONICITY FOR K1,(R)-FREE GRAPHS
    CHEN, G
    SCHELP, RH
    JOURNAL OF GRAPH THEORY, 1995, 20 (04) : 423 - 439
  • [2] Vertex-disjoint copies of K1,t in K1,r-free graphs
    Jiang, Suyun
    Chiba, Shuya
    Fujita, Shinya
    Yan, Jin
    DISCRETE MATHEMATICS, 2017, 340 (04) : 649 - 654
  • [3] Vertex -disjoint copies of K1,3 in K1,r-free graphs
    Jiang, Suyun
    Yan, Jin
    DISCRETE MATHEMATICS, 2016, 339 (12) : 3085 - 3088
  • [4] A note on Hamiltonian cycles in K1,r-free graphs
    Li, R
    ARS COMBINATORIA, 1999, 51 : 199 - 203
  • [5] Spanning connectivity of K1,r-free split graphs
    Xiong, Wei
    Chen, Xing
    Wu, Yang
    You, Zhifu
    Lai, Hong-Jian
    DISCRETE APPLIED MATHEMATICS, 2024, 358 : 176 - 183
  • [6] Weights of induced subgraphs in K1,r-free graphs
    Pruchnewski, Anja
    Voigt, Margit
    DISCRETE MATHEMATICS, 2012, 312 (16) : 2429 - 2432
  • [7] The Hamiltonian properties in K1,r-free split graphs
    Dai, Guowei
    Zhang, Zan-Bo
    Broersma, Hajo
    Zhang, Xiaoyan
    DISCRETE MATHEMATICS, 2022, 345 (06)
  • [8] On hamiltonian properties of K1,r-free split graphs
    Liu, Xia
    Song, Sulin
    Zhan, Mingquan
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [9] Fractional (g, f)-factors in K1,r-free graphs
    Wu, Jie
    Zhou, Sizhong
    UTILITAS MATHEMATICA, 2016, 99 : 241 - 249
  • [10] Hamiltonian Cycle in K1,r-Free Split Graphs - A Dichotomy
    Renjith, P.
    Sadagopan, N.
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2022, 33 (01) : 1 - 32