SkipGateNet: A Lightweight CNN-LSTM Hybrid Model With Learnable Skip Connections for Efficient Botnet Attack Detection in IoT

被引:5
|
作者
Alshehri, Mohammed S. [1 ]
Ahmad, Jawad [2 ]
Almakdi, Sultan [1 ]
Qathrady, Mimonah Al [3 ]
Ghadi, Yazeed Yasin [4 ]
Buchanan, William J. [2 ]
机构
[1] Najran Univ, Coll Comp Sci & Informat Syst, Dept Comp Sci, Najran 61441, Saudi Arabia
[2] Edinburgh Napier Univ, Sch Comp Engn & Built Environm, Edinburgh EH10 5DT, Scotland
[3] Najran Univ, Coll Comp Sci & Informat Syst, Dept Informat Syst, Najran 61441, Saudi Arabia
[4] Al Ain Univ, Dept Comp Sci, Abu Dhabi, U Arab Emirates
关键词
Botnets; botnet attacks; bashlite; intrusion detection; Mirai; INTRUSION DETECTION; SECURITY; INTERNET;
D O I
10.1109/ACCESS.2024.3371992
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rise of Internet of Things (IoT) has led to increased security risks, particularly from botnet attacks that exploit IoT device vulnerabilities. This situation necessitates effective Intrusion Detection Systems (IDS), that are accurate, lightweight, and fast (having less inference time), designed particularly to detect botnet attacks in resource constrained IoT devices. This paper proposes SkipGateNet, a novel deep learning model designed for detecting Mirai and Bashlite botnet attacks in resource constrained IoT and fog computing environments. SkipGateNet is a lightweight, fast model combining 1D-Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) layers. The novelty of this model lies in the integration of 'Learnable Skip Connections'. These connections feature gating mechanisms that enhance detection by focusing on relevant features and ignoring irrelevant ones. They add adaptability to the architecture, performing feature selection and propagating only essential features to deeper layers. Tested on the N-BaIoT dataset, SkipGateNet efficiently detects ten types of botnet attacks, with a remarkable test accuracy of 99.91%. It is also compact (2596.87 KB) and demonstrates a quick inference time of 8.0 milliseconds, suitable for real-time implementation in resource-limited settings. While evaluating its performance, parameters like precision, recall, accuracy, and F1 score were considered, along with statistical reliability measures like Cohen's Kappa Coefficient and Matthews Correlation Coefficient. These highlight its reliability and effectiveness in IoT security challenges. The paper also compares SkipGateNet to existing models and four other deep learning architectures, including two sequential CNN architectures, a simple CNN+LSTM architecture, and a CNN+LSTM with standard skip connections. SkipGateNet surpasses all in accuracy and inference time, demonstrating its superiority in addressing IoT security issues.
引用
收藏
页码:35521 / 35538
页数:18
相关论文
共 35 条
  • [1] Botnet Attack Detection by Using CNN-LSTM Model for Internet of Things Applications
    Alkahtani, Hasan
    Aldhyani, Theyazn H. H.
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [2] Intelligent botnet detection in IoT networks using parallel CNN-LSTM fusion
    Jiang, Rongrong
    Weng, Zhengqiu
    Shi, Lili
    Weng, Erxuan
    Li, Hongmei
    Wang, Weiqiang
    Zhu, Tiantian
    Li, Wuzhao
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (24):
  • [3] A lightweight hybrid CNN-LSTM explainable model for ECG-based arrhythmia detection
    Alamatsaz, Negin
    Tabatabaei, Leyla
    Yazdchi, Mohammadreza
    Payan, Hamidreza
    Alamatsaz, Nima
    Nasimi, Fahimeh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 90
  • [4] Hybrid Machine Learning Model for Efficient Botnet Attack Detection in IoT Environment
    Ali, Mudasir
    Shahroz, Mobeen
    Mushtaq, Muhammad Faheem
    Alfarhood, Sultan
    Safran, Mejdl
    Ashraf, Imran
    IEEE ACCESS, 2024, 12 : 40682 - 40699
  • [5] An efficient CNN-LSTM model for sentiment detection in #BlackLivesMatter
    Ankita
    Rani, Shalli
    Bashir, Ali Kashif
    Alhudhaif, Adi
    Koundal, Deepika
    Gunduz, Emine Selda
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 193
  • [6] A Hybrid CNN-LSTM Model With Attention Mechanism for Improved Intrusion Detection in Wireless IoT Sensor Networks
    Phalaagae, Pendukeni
    Zungeru, Adamu Murtala
    Yahya, Abid
    Sigweni, Boyce
    Rajalakshmi, Selvaraj
    IEEE ACCESS, 2025, 13 : 57322 - 57341
  • [7] A deep learning-based novel hybrid CNN-LSTM architecture for efficient detection of threats in the IoT ecosystem
    Nazir, Ahsan
    He, Jingsha
    Zhu, Nafei
    Qureshi, Saima Siraj
    Qureshi, Siraj Uddin
    Ullah, Faheem
    Wajahat, Ahsan
    Pathan, Muhammad Salman
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (07)
  • [8] Lightweight Model for Botnet Attack Detection in Software Defined Network-Orchestrated IoT
    Negera, Worku Gachena
    Schwenker, Friedhelm
    Debelee, Taye Girma
    Melaku, Henock Mulugeta
    Feyisa, Degaga Wolde
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [9] Lightweight Hybrid CNN Model for Face Presentation Attack Detection
    Turhal, Ugur
    Yilmaz, Asuman Gunay
    Nabiyev, Vasif
    INFORMATION TECHNOLOGIES AND THEIR APPLICATIONS, PT II, ITTA 2024, 2025, 2226 : 228 - 240
  • [10] A lightweight and efficient model for botnet detection in IoT using stacked ensemble learningA lightweight and efficient model for botnet detection in IoT using...R. Esmaeilyfard et al.
    Rasool Esmaeilyfard
    Zohre Shoaei
    Reza Javidan
    Soft Computing, 2025, 29 (1) : 89 - 101