INTERPOLATION THEOREM FOR DISCRETE NET SPACES

被引:0
|
作者
Kalidolday, A. H. [1 ]
Nursultanov, E. D. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Moscow MV Lomonosov State Univ, Kazakhstan Branch, Astana, Kazakhstan
关键词
Net spaces; discrete Net spaces; Marcinkiewicz type interpolation theorem; HARDY-LITTLEWOOD; FOURIER-SERIES; INEQUALITIES; MULTIPLIERS;
D O I
10.26577/JMMCS2023v120i4a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study discrete net spaces np,q(M), where M is some fixed family of sets from the set of integers Z. Note that in the case when the net M is the set of all finite subsets of integers, the space np,q(M) coincides with the discrete Lorentz space lp,q(M). For these spaces, the classical interpolation theorems of Marcinkiewicz-Calderon are known. In this paper, we study the interpolation properties of discrete network spaces np,q(M),in the case when the family of sets M is the set of all finite segments from the class of integers Z, i.e. finite arithmetic progressions with a step equal to 1. These spaces are characterized by such properties that for monotonically nonincreasing sequences the norm in the space np,q(M) coincides with the norm of the discrete Lorentz space lp,q(M). At the same time, in contrast to the Lorentz spaces, the given spaces np,q(M) may contain sequences that do not tend to zero. The main result of this work is the proof of the interpolation theorem for these spaces with respect to the real interpolation method. It is shown that the scale of discrete net spaces np,q(M) is closed with respect to the real interpolation method. As a corollary, an interpolation theorem of Marcinkiewicz type is presented. These assertions make it possible to obtain strong estimates from weak estimates.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 50 条
  • [1] Interpolation Theorem for Discrete Net Spaces
    Kalidolday, Aitolkyn H.
    Nursultanov, Erlan D.
    EXTENDED ABSTRACTS MWCAPDE 2023, 2024, 1 : 71 - 78
  • [2] Interpolation Theorem for Anisotropic Net Spaces
    A. N. Bashirova
    A. H. Kalidolday
    E. D. Nursultanov
    Russian Mathematics, 2021, 65 : 1 - 12
  • [3] Interpolation Theorem for Anisotropic Net Spaces
    Bashirova, A. N.
    Kalidolday, A. H.
    Nursultanov, E. D.
    RUSSIAN MATHEMATICS, 2021, 65 (08) : 1 - 12
  • [4] MARCINKIEWICZ'S INTERPOLATION THEOREM FOR LINEAR OPERATORS ON NET SPACES
    Kalidolday, A. H.
    Nursultanov, E. D.
    EURASIAN MATHEMATICAL JOURNAL, 2022, 13 (04): : 61 - 69
  • [5] AN INTERPOLATION THEOREM FOR MODULAR SPACES
    MITYAGIN, B
    LECTURE NOTES IN MATHEMATICS, 1984, 1070 : 10 - 23
  • [6] AN INTERPOLATION THEOREM ON BANACH FUNCTION SPACES
    SHIMOGAKI, T
    STUDIA MATHEMATICA, 1968, 31 (03) : 233 - +
  • [7] EXACT INTERPOLATION THEOREM FOR LP SPACES
    OVCHINNIKOV, VI
    DOKLADY AKADEMII NAUK SSSR, 1983, 272 (02): : 300 - 303
  • [8] INTERPOLATION METHODS FOR ANISOTROPIC NET SPACES
    Bashirova, A. N.
    Kalidolday, A. H.
    Nursultanov, E. D.
    EURASIAN MATHEMATICAL JOURNAL, 2024, 15 (02):
  • [9] A discrete framework for the interpolation of Banach spaces
    Lindemulder, Nick
    Lorist, Emiel
    ADVANCES IN MATHEMATICS, 2024, 440
  • [10] Interpolation theorem on Lorentz spaces over weighted measure spaces
    Moritoh, S
    Niwa, M
    Sobukawa, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2329 - 2334