Diffusion Tensor and Kurtosis MRI-Based Radiomics Analysis of Kidney Injury in Type 2 Diabetes

被引:4
|
作者
Yang, Daoyu [1 ,2 ]
Tian, Chong [2 ,3 ]
Liu, Jian [1 ,2 ]
Peng, Yunsong [2 ]
Xiong, Zhenliang [1 ,2 ]
Da, Jingjing [4 ]
Yang, Yuqi [4 ]
Zha, Yan [3 ,4 ,6 ]
Zeng, Xianchun [2 ,5 ]
机构
[1] Guizhou Univ, Coll Comp Sci & Technol, Engn Res Ctr Text Comp & Cognit Intelligence,State, Key Lab Intelligent Med Image Anal & Precise Diag, Guiyang, Peoples R China
[2] Guizhou Prov Peoples Hosp, Dept Radiol, Guiyang, Peoples R China
[3] Guizhou Univ, Sch Med, Guiyang, Guizhou, Peoples R China
[4] Guizhou Prov Peoples Hosp, Dept Med, Renal Div, Guiyang, Peoples R China
[5] 83 Zhongshan East Rd, Guiyang 550002, Guizhou, Peoples R China
[6] Guizhou Prov Peoples Hosp, Dept Nephrol, 83 Zhongshan East Rd, Guiyang 550002, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
diabetic kidney disease; type 2 diabetes mellitus; radiomics; diffusion MRI; deep learning; WHITE-MATTER; DISEASE;
D O I
10.1002/jmri.29263
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) can provide quantitative parameters that show promise for evaluation of diabetic kidney disease (DKD). The combination of radiomics with DTI and DKI may hold potential clinical value in detecting DKD. Purpose: To investigate radiomics models of DKI and DTI for predicting DKD in type 2 diabetes mellitus (T2DM) and evaluate their performance in automated renal parenchyma segmentation. Study Type: Prospective. Population: One hundred and sixty-three T2DM patients (87 DKD; 63 females; 27-80 years), randomly divided into training cohort (N = 114) and validation cohort (N = 49). Field Strength/Sequence: 1.5-T, diffusion spectrum imaging (DSI) with 9 different b-values. Assessment: The images of DSI were processed to generate DKI and DTI parameter maps, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). The Swin UNETR model was trained with 5-fold cross-validation using 100 samples for renal parenchyma segmentation. Subsequently, radiomics features were automatically extracted from each parameter map. The performance of the radiomics models on the validation cohort was evaluated by utilizing the receiver operating characteristic (ROC) curve. Statistical Tests: Mann-Whitney U test, Chi-squared test, Pearson correlation coefficient, least absolute shrinkage and selection operator (LASSO), dice similarity coefficient (DSC), decision curve analysis (DCA), area under the curve (AUC), and DeLong's test. The threshold for statistical significance was set at P < 0.05. Results: The DKI_MD achieved the best segmentation performance (DSC, 0.925 +/- 0.011). A combined radiomics model (DTI_FA, DTI_MD, DKI_FA, DKI_MD, and DKI_RD) showed the best performance (AUC, 0.918; 95% confidence interval [CI]: 0.820-0.991). When the threshold probability was greater than 20%, the combined model provided the greatest net benefit. Among the single parameter maps, the DTI_FA exhibited superior diagnostic performance (AUC, 887; 95% CI: 0.779-0.972). Data Conclusion: The radiomics signature constructed based on DKI and DTI may be used as an accurate and non-invasive tool to identify T2DM and DKD.
引用
收藏
页码:2078 / 2087
页数:10
相关论文
共 50 条
  • [1] Editorial for "Diffusion Tensor and Kurtosis MRI-Based Radiomics Analysis of Kidney Injury in Type 2 Diabetes"
    Zahergivar, Aryan
    Singh, Shiva
    Golagha, Mahshid
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (05) : 2088 - 2089
  • [2] Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging
    Takahashi, Satoshi
    Takahashi, Wataru
    Tanaka, Shota
    Haga, Akihiro
    Nakamoto, Takahiro
    Suzuki, Yuichi
    Mukasa, Akitake
    Takayanagi, Shunsaku
    Kitagawa, Yosuke
    Hana, Taijun
    Nejo, Takahide
    Nomura, Masashi
    Nakagawa, Keiichi
    Saito, Nobuhito
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (04): : 784 - 791
  • [3] RADIOMICS ANALYSIS FOR DETECTION OF IDH MUTATION OF GLIOMA USING DIFFUSION TENSOR AND KURTOSIS IMAGES
    Takahashi, Satoshi
    Takahashi, Wataru
    Tanaka, Shota
    Haga, Akihiro
    Nakamoto, Takahiro
    Mukasa, Akitake
    Takayanagi, Shunsaku
    Suzuki, Yuichi
    Koike, Tsukasa
    Kitagawa, Yosuke
    Hana, Taijyun
    Nejo, Takahide
    Nomura, Masashi
    Saito, Nobuhito
    NEURO-ONCOLOGY, 2018, 20 : 188 - 188
  • [4] Validation of diffusion tensor MRI-based muscle fiber tracking
    Damon, BM
    Ding, ZH
    Anderson, AW
    Freyer, AS
    Gore, JC
    MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (01) : 97 - 104
  • [5] Multiparameter MRI-based radiomics analysis for preoperative prediction of type II endometrial cancer
    Cao, Yingying
    Zhang, Wei
    Wang, Xiaorong
    Lv, Xiaojing
    Zhang, Yaping
    Guo, Kai
    Ren, Shuai
    Li, Yuan
    Wang, Zhongqiu
    Chen, Jingya
    HELIYON, 2024, 10 (12)
  • [6] Brain microstructural alterations in type 2 diabetes: diffusion kurtosis imaging provides added value to diffusion tensor imaging
    Ying Xiong
    Yi Sui
    Shun Zhang
    Xiaohong Joe Zhou
    Shaolin Yang
    Yang Fan
    Qiang Zhang
    Wenzhen Zhu
    European Radiology, 2019, 29 : 1997 - 2008
  • [7] Brain microstructural alterations in type 2 diabetes: diffusion kurtosis imaging provides added value to diffusion tensor imaging
    Xiong, Ying
    Sui, Yi
    Zhang, Shun
    Zhou, Xiaohong Joe
    Yang, Shaolin
    Fan, Yang
    Zhang, Qiang
    Zhu, Wenzhen
    EUROPEAN RADIOLOGY, 2019, 29 (04) : 1997 - 2008
  • [8] Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes
    Haoran Zhang
    Peng Wang
    Dafa Shi
    Xiang Yao
    Yanfei Li
    Xuedan Liu
    Yang Sun
    Jie Ding
    Siyuan Wang
    Guangsong Wang
    Ke Ren
    European Radiology, 2022, 32 : 2988 - 2997
  • [9] Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes
    Zhang, Haoran
    Wang, Peng
    Shi, Dafa
    Yao, Xiang
    Li, Yanfei
    Liu, Xuedan
    Sun, Yang
    Ding, Jie
    Wang, Siyuan
    Wang, Guangsong
    Ren, Ke
    EUROPEAN RADIOLOGY, 2022, 32 (05) : 2988 - 2997
  • [10] Evaluation of temporomandibular joint disc displacement with MRI-based radiomics analysis
    Yuksel, Hazal Duyan
    Orhan, Kaan
    Evlice, Burcu
    Kaya, Omer
    DENTOMAXILLOFACIAL RADIOLOGY, 2024, 54 (01) : 19 - 27