Heat Transfer Analysis and Performance Investigation of Generator Thermoelectric Applied in LPG Stove Waste Heat Recovery

被引:0
|
作者
Atmoko, Nugroho Tri [1 ]
Riyadi, Tri Widodo Besar [2 ]
Utomo, Bagus Radiant [2 ,3 ]
Jamaldi, Agus [1 ]
Nugroho, Arif Setyo [1 ]
机构
[1] Sekolah Tinggi Teknol Warga Surakarta, Mech Engn, Baki 57552, Sukoharjo, Indonesia
[2] Univ Muhammadiyah Surakarta, Fac Engn, Dept Mech Engn, Jl A Yani Tromol Pos 1, Kartasura 57102, Surakarta, Indonesia
[3] Univ Sebelas Maret, Res Ctr Sustainable Thermofluids, Jl Ir Sutami 36A, Kentingan 57126, Surakarta, Indonesia
来源
关键词
Waste heat; LPG stove; TEG; cooling system; heat transfer; PARAMETERS; DESIGN;
D O I
10.20508/ijrer.v13i1.13137.g8696
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A thermoelectric generator (TEG) can convert heat from LPG gas stoves into electricity. The application of this conversion technology consists of three major components: a hot side heat exchanger, a TEG, and a cold side heat exchanger. This study investigates the effects of TEG cold surface cooling system variations on heat transfer and the thermoelectric generator module's electric performance when applied to convert liquefied petroleum gas (LPG) stove waste heat. Four thermoelectric generator modules are placed outside the plate and connected in series to take advantage of the waste heat. Three different cooling systems are used to cool the thermoelectric generator module's cold surface: a heatsink, a heatsink with a fan, and a water block cooling system. Measurement and data retrieval are performed using the temperature and electrical output from the TEG module. Temperature and electrical output from the thermoelectric generator module are measured and data retrieved, while the heat transfer that occurs in the cooling system is calculated using the formulation. The results indicate that the cooling system's heat absorption capacity increases by more than 300% when the heatsink with a fan is used. When compared to a heatsink with a fan cooling system (i.e., 47.09 J/s), using a water block as a cooling system can increase heat absorption by 27% or a value of 60.00 J/s. Based on the performance of the thermoelectric generator module in generating electricity, it is clear that when comparing an air-cooling system to a water block-based cooler, the water block-based cooler produces more power. Water cooling is the optimal method for obtaining a high-power output from the TEG module when this conversion technology is applied to convert LPG stove waste heat to electrical energy.
引用
收藏
页码:70 / 76
页数:7
相关论文
共 50 条
  • [1] Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery
    Luo, Ding
    Sun, Zeyu
    Wang, Ruochen
    ENERGY, 2022, 238
  • [2] Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery
    Demir, Murat Emre
    Dincer, Ibrahim
    APPLIED THERMAL ENGINEERING, 2017, 120 : 694 - 707
  • [3] Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery
    Zhao, Yulong
    Wang, Shixue
    Ge, Minghui
    Li, Yanzhe
    Liang, Zhaojun
    Yang, Yurong
    APPLIED ENERGY, 2018, 228 : 2080 - 2089
  • [4] Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery
    Meng, Jing-Hui
    Wang, Xiao-Doug
    Chen, Wei-Hsin
    ENERGY CONVERSION AND MANAGEMENT, 2016, 120 : 71 - 80
  • [5] A dynamic model for thermoelectric generator applied in waste heat recovery
    Gou, Xiaolong
    Yang, Suwen
    Xiao, Heng
    Ou, Qiang
    ENERGY, 2013, 52 : 201 - 209
  • [6] Effect of Convection Heat Transfer on Performance of Waste Heat Thermoelectric Generator
    Rabari, Ronil
    Mahmud, Shohel
    Dutta, Animesh
    Biglarbegian, Mohammad
    HEAT TRANSFER ENGINEERING, 2015, 36 (17) : 1458 - 1471
  • [7] EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER ACROSS A THERMOELECTRIC GENERATOR FOR WASTE HEAT RECOVERY FROM AUTOMOBILE EXHAUST
    Pandit, Jaideep
    Thompson, Megan
    Ekkad, Srinath V.
    Huxtable, Scott
    PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE - 2013, VOL 1, 2014,
  • [8] A dynamic model for thermoelectric generator applied to vehicle waste heat recovery
    Lan, Song
    Yang, Zhijia
    Chen, Rui
    Stobart, Richard
    APPLIED ENERGY, 2018, 210 : 327 - 338
  • [9] Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery
    Zhao, Yulong
    Wang, Shixue
    Ge, Minghui
    Liang, Zhaojun
    Liang, Yifan
    Li, Yanzhe
    APPLIED ENERGY, 2019, 239 : 425 - 433
  • [10] Development and heat transfer analysis of a new heat recovery system with thermoelectric generator
    Demir, Murat Emre
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 108 : 2002 - 2010