r$r$-Cross t$t$-intersecting families via necessary intersection points

被引:2
|
作者
Gupta, Pranshu [1 ]
Mogge, Yannick [1 ]
Piga, Simon [2 ]
Schuelke, Bjarne [3 ,4 ]
机构
[1] Hamburg Univ Technol, Inst Math E 10, Chair Discrete Math, Hamburg, Germany
[2] Univ Birmingham, Sch Math, Watson Bldg, Birmingham, England
[3] Caltech, Div Phys Math & Astron, Pasadena, CA USA
[4] Univ Hamburg, Dept Math, Hamburg, Germany
关键词
MAXIMUM PRODUCT; THEOREM; SYSTEMS; SPACES; SIZES;
D O I
10.1112/blms.12803
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given integers r > 2$r\geqslant 2$ and n,t > 1$n,t\geqslant 1$ we call families F1,MIDLINE HORIZONTAL ELLIPSIS,Fr subset of P([n])$\mathcal {F}_1,\dots ,\mathcal {F}_r\subseteq \mathcal {P}([n])$ r$r$-cross t$t$-intersecting if for all Fi is an element of Fi$F_i\in \mathcal {F}_i$, i is an element of[r]$i\in [r]$, we have |boolean AND i is an element of[r]Fi|> t$\vert \bigcap _{i\in [r]}F_i\vert \geqslant t$. We obtain a strong generalisation of the classic Hilton-Milner theorem on cross-intersecting families. In particular, we determine the maximum of n-ary sumation j is an element of[r]|Fj|$\sum _{j\in [r]}\vert \mathcal {F}_j\vert$ for r$r$-cross t$t$-intersecting families in the cases when these are k$k$-uniform families or arbitrary subfamilies of P([n])$\mathcal {P}([n])$. Only some special cases of these results had been proved before. We obtain the aforementioned theorems as instances of a more general result that considers measures of r$r$-cross t$t$-intersecting families. This also provides the maximum of n-ary sumation j is an element of[r]|Fj|$\sum _{j\in [r]}\vert \mathcal {F}_j\vert$ for families of possibly mixed uniformities k1, horizontal ellipsis ,kr$k_1,\ldots ,k_r$.
引用
收藏
页码:1447 / 1458
页数:12
相关论文
共 50 条
  • [1] Maximum size of r-cross t-intersecting families
    Gupta, Pranshu
    Mogge, Yannick
    Piga, Simon
    Schuelke, Bjarne
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 453 - 458
  • [2] On r-cross t-intersecting families for weak compositions
    Ku, Cheng Yeaw
    Wong, Kok Bin
    DISCRETE MATHEMATICS, 2015, 338 (07) : 1090 - 1095
  • [3] r-cross t-intersecting families for vector spaces
    Cao, Mengyu
    Lu, Mei
    Lv, Benjian
    Wang, Kaishun
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 193
  • [4] Nearly extremal non-trivial cross t-intersecting families and r-wise t-intersecting families
    Cao, Mengyu
    Lu, Mei
    Lv, Benjian
    Wang, Kaishun
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [5] More on r-cross t-intersecting families for vector spaces
    Yao, Tian
    Liu, Dehai
    Wang, Kaishun
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2025, 213
  • [6] Triangles in r-wise t-intersecting families
    Liao, Jiaqi
    Cao, Mengyu
    Lu, Mei
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 112
  • [7] On r-Cross Intersecting Families of Sets
    Frankl, Peter
    Tokushige, Norihide
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (05): : 749 - 752
  • [8] On cross t-intersecting families of sets
    Tokushige, Norihide
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (08) : 1167 - 1177
  • [9] On a conjecture of Tokushige for cross-t-intersecting families
    Zhang, Huajun
    Wu, Biao
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2025, 171 : 49 - 70
  • [10] The eigenvalue method for cross t-intersecting families
    Tokushige, Norihide
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (03) : 653 - 662