Flexural Behavior of Alkali-Activated Ultra-High-Performance Geopolymer Concrete Beams

被引:1
|
作者
Su, Jie [1 ,2 ]
Tan, Jiandong [2 ]
Li, Kai [1 ,2 ]
Fang, Zhi [1 ,2 ]
机构
[1] Hunan Univ, Coll Civil Engn, Key Lab Green & Adv Civil Engn Mat & Applicat Tech, Changsha 410082, Peoples R China
[2] Hunan Univ, Coll Civil Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
alkali-activated cement; ultra-high-performance geopolymer concrete (UHPGC); beam; flexural behavior; reinforcement ratio; steel fiber content;
D O I
10.3390/buildings14030701
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ultra-high-performance geopolymer concrete (UHPGC) emerges as a sustainable and cost-effective alternative to Portland cement-based UHPC, offering similar mechanical properties while significantly reducing carbon footprint and energy consumption. Research on UHPGC components is extremely scarce. This study focuses on the flexural and crack behavior of UHPGC beams with different steel fiber contents and longitudinal reinforcement ratios. Five UHPGC beams were tested under four-point bending. The test results were evaluated in terms of the failure mode, load-deflection relationship, flexural capacity, ductility, average crack spacing, and short-term flexural stiffness. The results show that all the UHPGC beams failed due to crack localization. Increases in the reinforcement ratio and steel fiber content had favorable effects on the flexural capacity and flexural stiffness. When the reinforcement ratio increased from 1.18% to 2.32%, the flexural capacity and flexural stiffness increased by 60.5% and 12.3%, respectively. As the steel fiber content increased from 1.5% to 2.5%, the flexural capacity and flexural stiffness increased by 4.7% and 4.4%, respectively. Furthermore, the flexural capacity, flexural stiffness, and crack spacing of the UHPGC beams were evaluated using existing methods. The results indicate that the existing methods can effectively predict flexural capacity and flexural stiffness in UHPGC beams but overestimate crack spacing. This study will provide a reference for the structural design of UHPGC.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Flexural behavior of ultra-high-performance concrete beams with various types of rebar
    Cao, Xia
    Ren, Yi-Cheng
    Zhang, Lu
    Jin, Ling-Zhi
    Qian, Kai
    COMPOSITE STRUCTURES, 2022, 292
  • [2] Ultra-High-Performance Alkali-Activated Concrete: Effect of Waste Crumb Rubber Aggregate Proportions on Tensile and Flexural Properties
    Li, Lei
    Chen, Zhongmin
    Che, Weixian
    Cheng, Cheng
    Chen, Yiwu
    Li, Dehui
    Liu, Lianghua
    Guo, Yongchang
    BUILDINGS, 2024, 14 (04)
  • [3] Flexural behavior of alkali-activated slag-based concrete beams
    Du, Yunxing
    Wang, Jia
    Shi, Caijun
    Hwang, Hyeon-Jong
    Li, Ning
    ENGINEERING STRUCTURES, 2021, 229 (229)
  • [4] Carbon material-based thermoelectric ultra-high-performance alkali-activated concrete
    Piao, Rongzhen
    Lee, Dongsun
    Woo, Seong Yun
    Jeong, Jae-Weon
    Hiew, Shack Yee
    Lee, Seung-Jung
    Yoo, Doo-Yeol
    COMPOSITES PART B-ENGINEERING, 2025, 297
  • [5] Flexural strength of prestressed Ultra-High-Performance concrete beams
    Fang, Zhi
    Tian, Xin
    Peng, Fei
    ENGINEERING STRUCTURES, 2023, 279
  • [6] Flexural behavior of hybrid ultra-high-performance concrete
    Danha, L. S.
    Abdul-hussien, Z. A.
    Abduljabbar, M. S.
    Yassin, L. A. G.
    4TH INTERNATIONAL CONFERENCE ON BUILDINGS, CONSTRUCTION AND ENVIRONMENTAL ENGINEERING, 2020, 737
  • [7] Size effect on flexural behavior of ultra-high-performance concrete beams with different reinforcement
    Cao, Xia
    Ren, Yi-Cheng
    Qian, Kai
    Fu, Feng
    Deng, Xiao-Fang
    Zhang, Wei-Jia
    STRUCTURES, 2022, 41 : 969 - 981
  • [8] Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios
    Hasgul, Umut
    Turker, Kaan
    Birol, Tamer
    Yavas, Altug
    STRUCTURAL CONCRETE, 2018, 19 (06) : 1577 - 1590
  • [9] Ultra-high-performance geopolymer concrete: A review
    Qaidi, Shaker M. A.
    Atrushi, Dawood Sulaiman
    Mohammed, Ahmed S.
    Ahmed, Hemn Unis
    Faraj, Rabar H.
    Emad, Wael
    Tayeh, Bassam A.
    Najm, Hadee Mohammed
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 346
  • [10] Enhanced tensile performance of ultra-high-performance alkali-activated concrete using surface roughened steel fibers
    Kim, Gi Woong
    Oh, Taekgeun
    Chun, Booki
    Lee, Seung Won
    Hung, Chung-Chan
    Yoo, Doo-Yeol
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 409