Large-scale multimodal multiobjective evolutionary optimization based on hybrid hierarchical clustering

被引:20
|
作者
Ding, Zhuanlian [1 ]
Cao, Lve [1 ]
Chen, Lei [1 ]
Sun, Dengdi [2 ,4 ]
Zhang, Xingyi
Tao, Zhifu [3 ]
机构
[1] Anhui Univ, Sch Internet, Hefei 230039, Peoples R China
[2] Anhui Univ, Sch Artificial Intelligence, Key Lab Intelligent Comp & Signal Proc ICSP, Minist Educ, Hefei 230601, Peoples R China
[3] Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R China
[4] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230026, Peoples R China
关键词
Multimodal multiobjective optimization; Evolutionary algorithm; Large-scale optimization; Hybrid hierarchical clustering; Sparse Pareto optimal solutions; SUBSET-SELECTION; ALGORITHM; BENCHMARKING; PERFORMANCE;
D O I
10.1016/j.knosys.2023.110398
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large-scale multimodal multiobjective optimization problems (MMOPs) have different equivalent Pareto optimal solution sets (PSs) for the same Pareto front and contain a great number of decision variables. In particular, when most variables among the Pareto optimal solutions are zero, such problems are termed large-scale MMOPs with sparse Pareto optimal solutions. Due to the multimodal properties of these problems, the curse of dimensionality, and the unknown sparsity of the search space, it is extremely difficult for existing optimizers to solve them. In this study, we propose a multipopulation multimodal evolutionary algorithm based on hybrid hierarchical clustering to solve such problems. The proposed algorithm uses hybrid hierarchical clustering on subpopulations to distinguish the resources of different equivalent PSs and partition them into different subpopulations to achieve efficient cooperative coevolution among multiple subpopulations. Moreover, an adaptive variation method incorporating both local and global guiding information is designed, and an improved environmental selection method based on local guiding information is conducted to improve the convergence in a large search space and introduce diversity to the population. Experimental results verified that the proposed algorithm outperforms the state-of-the-art MOEAs in terms of performance and convergence speed, especially when the number of equivalent PSs is large.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems
    Tian, Ye
    Liu, Ruchen
    Zhang, Xingyi
    Ma, Haiping
    Tan, Kay Chen
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (03) : 405 - 418
  • [2] Evolutionary Multitasking for Large-Scale Multiobjective Optimization
    Liu, Songbai
    Lin, Qiuzhen
    Feng, Liang
    Wong, Ka-Chun
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (04) : 863 - 877
  • [3] Innovization-based Evolutionary Large-Scale Multiobjective Optimization
    Liu, Songbai
    Yan, Qianqiang
    Wang, Zeyi
    2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024, 2024, : 96 - 102
  • [4] Evolutionary Large-Scale Multiobjective Optimization: Benchmarks and Algorithms
    Liu, Songbai
    Lin, Qiuzhen
    Wong, Ka-Chun
    Li, Qing
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (03) : 401 - 415
  • [5] A Scalable Indicator-Based Evolutionary Algorithm for Large-Scale Multiobjective Optimization
    Hong, Wenjing
    Tang, Ke
    Zhou, Aimin
    Ishibuchi, Hisao
    Yao, Xin
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (03) : 525 - 537
  • [6] A dual decomposition strategy for large-scale multiobjective evolutionary optimization
    Yang, Cuicui
    Wang, Peike
    Ji, Junzhong
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (05): : 3767 - 3788
  • [7] An Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems
    Tian, Ye
    Zhang, Xingyi
    Wang, Chao
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 380 - 393
  • [8] A Multivariation Multifactorial Evolutionary Algorithm for Large-Scale Multiobjective Optimization
    Feng, Yinglan
    Feng, Liang
    Kwong, Sam
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (02) : 248 - 262
  • [9] Learning to Accelerate Evolutionary Search for Large-Scale Multiobjective Optimization
    Liu, Songbai
    Li, Jun
    Lin, Qiuzhen
    Tian, Ye
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (01) : 67 - 81
  • [10] Iterated Problem Reformulation for Evolutionary Large-Scale Multiobjective Optimization
    He, Cheng
    Cheng, Ran
    Tian, Ye
    Zhang, Xingyi
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,