Re-identification potential of structured health data

被引:0
|
作者
Drechsler, Joerg [1 ,2 ,3 ,5 ]
Pauly, Hannah [4 ]
机构
[1] Inst Arbeitsmarkt & Berufsforschung IAB, Nurnberg, Germany
[2] Univ Mannheim, Mannheim, Germany
[3] Univ Maryland, Joint Program Survey Methodol JPSM, College Pk, MD USA
[4] Bundesinst Arzneimittel & Medizinprodukte BfArM, Forschungsdatenzentrum Gesundheit, Bonn, Germany
[5] Inst Arbeitsmarkt & Berufsforschung IAB, Regensburger Str 104, D-90478 Nurnberg, Germany
关键词
Reidentification risk; Anonymization; Synthetic data; Electronic health records; Data privacy; MICRODATA;
D O I
10.1007/s00103-023-03820-2
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Broad access to health data offers great potential for science and research. However, health data often contains sensitive information that must be protected in a special way. In this context, the article deals with the re-identification potential of health data. After defining the relevant terms, we discuss factors that influence the re-identification potential. We summarize international privacy standards for health data and highlight the importance of background knowledge. Given that the reidentification potential is often underestimated in practice, we present strategies for mitigation based on the Five Safes concept. We also discuss classical data protection strategies as well as methods for generating synthetic health data. The article concludes with a brief discussion and outlook on the planned Health Data Lab at the Federal Institute for Drugs and Medical Devices.
引用
收藏
页码:164 / 170
页数:7
相关论文
共 50 条
  • [1] A Systematic Review of Re-Identification Attacks on Health Data
    El Emam, Khaled
    Jonker, Elizabeth
    Arbuckle, Luk
    Malin, Bradley
    PLOS ONE, 2011, 6 (12):
  • [2] Sparse tree structured representation for re-identification
    Pribadi, Rudy Cahyadi Hario
    Pao, Hsing-Kuo
    PATTERN RECOGNITION, 2016, 60 : 394 - 404
  • [3] A Structured Graph Attention Network for Vehicle Re-Identification
    Zhu, Yangchun
    Zha, Zheng-Jun
    Zhang, Tianzhu
    Liu, Jiawei
    Luo, Jiebo
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 646 - 654
  • [4] Data Re-Identification: Prioritize Privacy
    Gutmann, Amy
    SCIENCE, 2013, 339 (6123) : 1032 - 1032
  • [5] Legal Limits to Data Re-Identification
    Wilson, Stephen
    SCIENCE, 2013, 339 (6120) : 647 - 647
  • [6] Data Re-Identification: Societal Safeguards
    Altman, Russ B.
    Clayton, Ellen Wright
    Kohane, Isaac S.
    Malin, Bradley A.
    Roden, Dan M.
    SCIENCE, 2013, 339 (6123) : 1032 - 1033
  • [7] Data Re-Identification: Protect the Children
    Gurwitz, David
    SCIENCE, 2013, 339 (6123) : 1033 - 1033
  • [8] Re-identification of Smart Meter data
    Buchmann, Erik
    Boehm, Klemens
    Burghardt, Thorben
    Kessler, Stephan
    PERSONAL AND UBIQUITOUS COMPUTING, 2013, 17 (04) : 653 - 662
  • [9] Re-identification of Smart Meter data
    Erik Buchmann
    Klemens Böhm
    Thorben Burghardt
    Stephan Kessler
    Personal and Ubiquitous Computing, 2013, 17 : 653 - 662
  • [10] Structured learning of metric ensembles with application to person re-identification
    Paisitkriangkrai, Sakrapee
    Wu, Lin
    Shen, Chunhua
    van den Hengel, Anton
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 156 : 51 - 65