On the order of Tate-Shafarevich groups over finite Galois extensions

被引:0
|
作者
Yu, Hoseog [1 ]
机构
[1] Sejong Univ, Dept Math, 209 Neungdong Ro, Seoul 05006, South Korea
关键词
CURVES; BIRCH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an abelian variety defined over a number field K. Let L be a finite Galois extension of K with Galois group G and let X(A/K) and X(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and of A over L. Define A(f) to be an abelian variety defined over K derived from nontrivial group representations of G. Assuming X(A/L) is finite, we compute [X(A/L)]/[X(A/K)], where [X] is the order of a finite abelian group X.
引用
收藏
页数:94
相关论文
共 50 条