The stochastic Leibniz formula for Volterra integrals under enlarged filtrations

被引:1
|
作者
Hess, Markus
机构
[1] Independent Researcher, Frankfurt/Main, Germany
关键词
Backward stochastic Volterra integral equation (BSVIE); Doleans-Dade exponential; drift restriction; enlarged filtration; Levy process; parameter integral; stochastic differential equation (SDE); stochastic Leibniz formula; Volterra process/integral/equation; DIFFERENTIAL-EQUATIONS; INSIDER; MARKET; JUMPS;
D O I
10.1080/15326349.2023.2173233
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we derive stochastic Leibniz formulas for Volterra integrals under enlarged filtrations. We investigate both pure-jump and Brownian Volterra processes under diverse initially enlarged filtration approaches. In these setups, we compare the ordinary with the stochastic (Doleans-Dade) exponential of a Volterra process and provide the corresponding martingale conditions. We also consider backward stochastic Volterra integral equations (BSVIEs) under enlarged filtrations and obtain the related solution formulas. We finally propose an anticipative Heath Jarrow Morton (HJM) forward rate model of Volterra-type and infer the associated bond price representation. In an introductory section, we compile various facts on deterministic and stochastic Leibniz formulas for parameter integrals.
引用
收藏
页码:823 / 850
页数:28
相关论文
共 50 条