Lower bounds on the maximal number of rational points on curves over finite fields

被引:1
|
作者
Bergstrom, Jonas [1 ]
Howe, Everett w.
Garcia, Elisa Lorenzo [2 ]
Ritzenthaler, Christophe [3 ]
机构
[1] Stockholms Univ, Matemat Inst, SE-10691 Stockholm, Sweden
[2] Univ Neuchatel, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland
[3] Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
关键词
11G20; 14H25; 14H30; 11R45; POLYNOMIALS; MONODROMY; MODULI; GENUS;
D O I
10.1017/S0305004123000476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given genus g >= 1, we give lower bounds for the maximal number of rational points on a smooth projective absolutely irreducible curve of genus g over F-q. As a consequenceof Katz-Sarnak theory, we first get for any given g > 0, any epsilon > 0 and all q large enough, the existence of a curve of genus g over F-q with at least 1 + q + (2g-epsilon) root q rational points. Then using sums of powers of traces of Frobenius of hyperelliptic curves, we get a lower bound of the form 1 + q + 1.71 root qvalid for g >= 3 and odd q >= 11. Finally, explicit constructions of towers of curves improve this result: We show that the bound 1 + q + 4 root q - 32 is valid for allg >= 2 and for all q.
引用
收藏
页码:213 / 238
页数:26
相关论文
共 50 条