Changes in Chemical Composition and Fatty Acid Profile of Milk and Cheese and Sensory Profile of Milk via Supplementation of Goats' Diet with Marine Algae

被引:6
|
作者
Pajor, Ferenc [1 ]
Varkonyi, David [1 ]
Dalmadi, Istvan [2 ]
Pasztorne-Huszar, Klara [2 ]
Egerszegi, Istvan [1 ]
Penksza, Karoly [3 ]
Poti, Peter [1 ]
Bodnar, Akos [1 ]
机构
[1] Hungarian Univ Agr & Life Sci, Inst Anim Sci, Dept Anim Husb Technol & Anim Welf, Pater Karoly 1, H-2100 Godollo, Hungary
[2] Hungarian Univ Agr & Life Sci, Inst Food Sci & Technol, Dept Livestock Prod & Food Preservat Technol, Menes ut 43-45, H-1118 Budapest, Hungary
[3] Hungarian Univ Agr & Life Sci, Inst Agron, Dept Bot, Pater Karoly 1, H-2100 Godollo, Hungary
来源
ANIMALS | 2023年 / 13卷 / 13期
关键词
fatty acids; cheese; e-nose; DHA; Schizochytrium limacinum; PHYSICOCHEMICAL CHARACTERISTICS; DOCOSAHEXAENOIC ACID; YIELD; PRODUCTS; COWS; BIOHYDROGENATION; FERMENTATION; PERFORMANCE; HEALTH; RUMEN;
D O I
10.3390/ani13132152
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Simple Summary Recently, global interest in goat milk and goat milk products has increased, due to their high nutritional value and better amino acid composition and fatty acid profile compared to cow milk. Moreover, the more favorable fatty acid composition of these foodstuffs (such as increased long-chain n-3 fatty acids) has significant implications on the reduction of human health problems and is increasingly important for consumers as a result. One of the common ways to enhance the foodstuffs via long-chain n-3 polyunsaturated fatty acids (PUFA) is to enrich animal diets with fishmeal, fish oil, or marine algae. Marine algae are a source of long-chain n-3 PUFA, such as docosahexaenoic acid (DHA). DHA is essential for human nutrition because it is able to reduce the risk of coronary heart disease and it has antihaemolytic properties. Conversely, marine algae supplementation is linked to some adverse effects, such as decreased dry matter intake and milk yield, and results in milk fat depression in dairy animals and influences the flavour of their milk. This study evaluated low-level marine algae supplementation in goat milk, whey, and cheese composition, and the fatty acid profile of goat milk and cheese as well as the sensory profile of goat milk. In this report, daily supplementation of 5 g/head of marine algae significantly influenced the recovery of fat and protein in curd, whey, and cheese composition. In addition, marine algae supplementation markedly improved the concentrations of beneficial fatty acids in milk and cheese without negative effects on milk flavour. The aim of the present study was to assess the effects of the low level of Schizochytrium limacinum marine algae (daily 5 g per animal) on the milk, cheese, and whey composition; fatty acid profile of milk and cheese; and the sensory profile of goat milk using an e-nose device. Thirty Alpine goats were randomly divided into two groups: the control group (C, n = 15)-fed grass with daily 600 g concentrate and the experimental group (MA, n = 15) who received the same forage and concentrate supplemented with 5 g/head/day marine algae. Animals were kept indoors and the investigation period lasted 52 days, including the first six weeks as the period of adaptation and the last 10 days as the treatment period. During the adaptation period, bulk milk samples from each group were collected once a week (0, 7, 14, 21, 28, 35, and 42 d), while during the treatment period (10 days), bulk milk samples from each group were taken every day, and cheese samples were processed from bulk milk each day from both groups. Marine algae supplementation had no negative effect on milk composition. In contrast, the marine algae inclusion significantly elevated the fat and protein content of whey and the protein content of cheese, as well as the recovery of fat and protein in the curd, while increasing the cheeses' moisture content on a fat-free basis. The marine algae supplementation significantly increased the docosahexaenoic acid (DHA) and the rumenic acid (CLA c9t11) concentrations and decreased the n-6/n-3 ratio in the milk and cheese. There were no significant differences between the C and the MA group with regard to the sensory profiles of the milk. It can be concluded that the milk obtained from goats given daily supplementation of 5g of MA has a fatty acid profile more beneficial to human health, without any negative effects on the milk's aromatic components.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Effect of marine algae supplementation on the fatty acid profile of milk of dairy goats kept indoor and on pasture
    Pajor, F.
    Egerszegi, I
    Steiber, O.
    Bodnar, A.
    Poti, P.
    JOURNAL OF ANIMAL AND FEED SCIENCES, 2019, 28 (02): : 169 - 176
  • [2] Changes in the rumen and milk fatty acid profile and milk composition in response to fish and microalgae oils supplementation to diet alone or combination in dairy goats
    Selma Büyükkılıç Beyzi
    Cem Çağlar Dallı
    Tropical Animal Health and Production, 2023, 55
  • [3] Changes in the rumen and milk fatty acid profile and milk composition in response to fish and microalgae oils supplementation to diet alone or combination in dairy goats
    Beyzi, Selma Buyukkilic
    Dalli, Cem Caglar
    TROPICAL ANIMAL HEALTH AND PRODUCTION, 2023, 55 (06)
  • [4] Effect of milk thermisation and farming system on cheese sensory profile and fatty acid composition
    Giaccone, Daniele
    Revello-Chion, Andrea
    Galassi, Laura
    Bianchi, Piergiorgio
    Battelli, Giovanna
    Coppa, Mauro
    Tabacco, Ernesto
    Borreani, Giorgio
    INTERNATIONAL DAIRY JOURNAL, 2016, 59 : 10 - 19
  • [5] Supplementation with whole cottonseed changes milk composition and milk fatty acid profile in dairy cows
    Dayani, O.
    Ghorbani, G. R.
    Esmailizadeh, A. K.
    ANIMAL PRODUCTION SCIENCE, 2011, 51 (02) : 95 - 101
  • [6] Lipid complex effect on fatty acid profile and chemical composition of cow milk and cheese
    Bodkowski, R.
    Czyz, K.
    Kupczynski, R.
    Patkowska-Sokola, B.
    Nowakowski, P.
    Wiliczkiewicz, A.
    JOURNAL OF DAIRY SCIENCE, 2016, 99 (01) : 57 - 67
  • [7] Effect of Marine Algae Supplementation on Somatic Cell Count, Prevalence of Udder Pathogens, and Fatty Acid Profile of Dairy Goats' Milk
    Pajor, Ferenc
    Egerszegi, Istvan
    Szucs, Agnes
    Poti, Peter
    Bodnar, Akos
    ANIMALS, 2021, 11 (04):
  • [8] Effects of dietary concentrate composition and linseed oil supplementation on the milk fatty acid profile of goats
    Gomez-Cortes, P.
    Civico, A.
    de la Fuente, M. A.
    Nunez Sanchez, N.
    Pena Blanco, F.
    Martinez Marin, A. L.
    ANIMAL, 2018, 12 (11) : 2310 - 2317
  • [9] The impact of the dietary supplementation level with Schizochytrium sp. on milk chemical composition and fatty acid profile, of both blood plasma and milk of goats
    Mavrommatis, Alexandros
    Tsiplakou, Eleni
    SMALL RUMINANT RESEARCH, 2020, 193
  • [10] Production, composition, fatty acid profile and sensory analysis of goat milk in goats fed buriti oil
    Morais, J. S.
    Bezerra, L. R.
    Silva, A. M. A.
    Araujo, M. J.
    Oliveira, R. L.
    Edvan, R. L.
    Torreao, J. N. C.
    Lanna, D. P. D.
    JOURNAL OF ANIMAL SCIENCE, 2017, 95 (01) : 395 - 406