K3 surfaces, Picard numbers and Siegel disks

被引:0
|
作者
Iwasaki, Katsunori [1 ]
Takada, Yuta [2 ]
机构
[1] Hokkaido Univ, Fac Sci, Dept Math, Kita 10,Nishi 8,Kita-ku, Sapporo 0600810, Japan
[2] Hokkaido Univ, Grad Sch Sci, Dept Math, Kita 10,Nishi 8,Kita ku, Sapporo 0600810, Japan
关键词
K3; surface; Picard number; Siegel disk; Salem number; Hypergeometric group; Lefschetz-type fixed point formula; PERIODIC POINTS; AUTOMORPHISMS; DYNAMICS;
D O I
10.1016/j.jpaa.2022.107215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If a K3 surface admits an automorphism with a Siegel disk, then its Picard number is an even integer between 0 and 18. Conversely, using the method of hypergeometric groups, we are able to construct K3 surface automorphisms with Siegel disks that realize all possible Picard numbers. The constructions involve extensive computer searches for appropriate Salem numbers and computations of algebraic numbers arising from holomorphic Lefschetz-type fixed point formulas and related Grothendieck residues.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条