机构:
Hokkaido Univ, Fac Sci, Dept Math, Kita 10,Nishi 8,Kita-ku, Sapporo 0600810, JapanHokkaido Univ, Fac Sci, Dept Math, Kita 10,Nishi 8,Kita-ku, Sapporo 0600810, Japan
Iwasaki, Katsunori
[1
]
论文数: 引用数:
h-index:
机构:
Takada, Yuta
[2
]
机构:
[1] Hokkaido Univ, Fac Sci, Dept Math, Kita 10,Nishi 8,Kita-ku, Sapporo 0600810, Japan
[2] Hokkaido Univ, Grad Sch Sci, Dept Math, Kita 10,Nishi 8,Kita ku, Sapporo 0600810, Japan
K3;
surface;
Picard number;
Siegel disk;
Salem number;
Hypergeometric group;
Lefschetz-type fixed point formula;
PERIODIC POINTS;
AUTOMORPHISMS;
DYNAMICS;
D O I:
10.1016/j.jpaa.2022.107215
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
If a K3 surface admits an automorphism with a Siegel disk, then its Picard number is an even integer between 0 and 18. Conversely, using the method of hypergeometric groups, we are able to construct K3 surface automorphisms with Siegel disks that realize all possible Picard numbers. The constructions involve extensive computer searches for appropriate Salem numbers and computations of algebraic numbers arising from holomorphic Lefschetz-type fixed point formulas and related Grothendieck residues.(c) 2022 Elsevier B.V. All rights reserved.
机构:
Russian Acad Sci, Steklov Math Inst, Moscow, Russia
Univ Liverpool, Dept Math Sci, Liverpool, Merseyside, EnglandRussian Acad Sci, Steklov Math Inst, Moscow, Russia