Automatic Segmentation of the Left Atrium from Computed Tomography Angiography Images

被引:2
|
作者
Kazi, Amaan [1 ,3 ]
Betko, Sage [2 ,3 ]
Salvi, Anish [1 ,3 ]
Menon, Prahlad G. [1 ,3 ,4 ]
机构
[1] Univ Pittsburgh, 302 Benedum Hall,3700 OHara St, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Stat & Machine Learning, Pittsburgh, PA USA
[3] ImageRx, Pittsburgh, PA 15212 USA
[4] Univ Pittsburgh, 302 Benedum Hall,3700 OHara St, Pittsburgh, PA 15213 USA
关键词
U-Net; Deep learning; Medical imaging; Machine learning;
D O I
10.1007/s10439-023-03170-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The left atrial appendage (LAA) causes 91% of thrombi in atrial fibrillation patients, a potential harbinger of stroke. Leveraging computed tomography angiography (CTA) images, radiologists interpret the left atrium (LA) and LAA geometries to stratify stroke risk. Nevertheless, accurate LA segmentation remains a time-consuming task with high inter-observer variability. Binary masks of the LA and their corresponding CTA images were used to train and test a 3D U-Net to automate LA segmentation. One model was trained using the entire unified-image-volume while a second model was trained on regional patch-volumes which were run for inference and then assimilated back into the full volume. The unified-image-volume U-Net achieved median DSCs of 0.92 and 0.88 for the train and test sets, respectively; the patch-volume U-Net achieved median DSCs of 0.90 and 0.89 for the train and test sets, respectively. This indicates that the unified-image-volume and patch-volume U-Net models captured up to 88 and 89% of the LA/LAA boundary's regional complexity, respectively. Additionally, the results indicate that the LA/LAA were fully captured in most of the predicted segmentations. By automating the segmentation process, our deep learning model can expedite LA/LAA shape, informing stratification of stroke risk.
引用
收藏
页码:1713 / 1722
页数:10
相关论文
共 50 条
  • [1] Automatic Segmentation of the Left Atrium from Computed Tomography Angiography Images
    Amaan Kazi
    Sage Betko
    Anish Salvi
    Prahlad G. Menon
    Annals of Biomedical Engineering, 2023, 51 : 1713 - 1722
  • [2] Automatic segmentation of the left atrium in cardiac computed tomography
    Vera, Miguel
    Huerfano, Yoleidy
    Valbuena, Oscar
    Chacon, Jose
    Contreras, Julio
    Vera, Maria
    Wilches-Duran, Sandra
    Graterol, Modesto
    Riano-Wilches, Daniela
    Salazar, Juan
    Rojas, Joselyn
    Bermudez, Valmore
    REVISTA LATINOAMERICANA DE HIPERTENSION, 2016, 11 (03): : 54 - 59
  • [3] Left atrial appendage automatic segmentation, in computed tomography images
    Huerfano, Y.
    Vera, M.
    Vera, M. I.
    Valbuena, O.
    Gelvez-Almeida, E.
    Salazar-Tores, J.
    Molina, V.
    5TH INTERNATIONAL MEETING FOR RESEARCHERS IN MATERIALS AND PLASMA TECHNOLOGY (5TH IMRMPT), 2019, 1386
  • [4] Automatic Segmentation of the Left Atrium from MR Images Via Semantic Information
    Deng, Chunhua
    Zhang, Xiaolong
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 3312 - 3316
  • [5] Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning
    Baskaran, Lohendran
    Al'Aref, Subhi J.
    Maliakal, Gabriel
    Lee, Benjamin C.
    Xu, Zhuoran
    Choi, Jeong W.
    Lee, Sang-Eun
    Sung, Ji Min
    Lin, Fay Y.
    Dunham, Simon
    Mosadegh, Bobak
    Kim, Yong-Jin
    Gottlieb, Ilan
    Lee, Byoung Kwon
    Chun, Eun Ju
    Cademartiri, Filippo
    Maffei, Erica
    Marques, Hugo
    Shin, Sanghoon
    Choi, Jung Hyun
    Chinnaiyan, Kavitha
    Hadamitzky, Martin
    Conte, Edoardo
    Andreini, Daniele
    Pontone, Gianluca
    Budoff, Matthew J.
    Leipsic, Jonathon A.
    Raff, Gilbert L.
    Virmani, Renu
    Samady, Habib
    Stone, Peter H.
    Berman, Daniel S.
    Narula, Jagat
    Bax, Jeroen J.
    Chang, Hyuk-Jae
    Min, James K.
    Shaw, Leslee J.
    PLOS ONE, 2020, 15 (05):
  • [6] Automatic pericardium segmentation and quantification of epicardial fat from computed tomography angiography
    Norlen, Alexander
    Alven, Jennifer
    Molnar, David
    Enqvist, Olof
    Norrlund, Rauni Rossi
    Brandberg, John
    Bergstrom, Goran
    Kahla, Fredrik
    JOURNAL OF MEDICAL IMAGING, 2016, 3 (03)
  • [7] Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography
    He, Xiuxiu
    Guo, Bang Jun
    Lei, Yang
    Wang, Tonghe
    Fu, Yabo
    Curran, Walter J.
    Zhang, Long Jiang
    Liu, Tian
    Yang, Xiaofeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (09):
  • [8] Automatic single-organ segmentation in computed tomography images
    Susomboon, Ruchaneewan
    Raicu, Daniela
    Furst, Jacob
    Channin, David
    ICDM 2006: SIXTH INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2006, : 1081 - 1085
  • [9] Automatic segmentation of the thoracic aorta in cardiac computed tomography images
    Vera, Miguel
    Huerfano, Yoleidy
    Contreras, Julio
    Vera, Maria
    Del Mar, Atilio
    Chacon, Jose
    Wilches-Duran, Sandra
    Graterol-Rivas, Modesto
    Riano-Wilches, Daniela
    Rojas, Joselyn
    Bermudez, Valmore
    REVISTA LATINOAMERICANA DE HIPERTENSION, 2016, 11 (04): : 110 - 116
  • [10] Automatic Intracranial Space Segmentation for Computed Tomography Brain Images
    C. Adamson
    A. C. Da Costa
    R. Beare
    A. G. Wood
    Journal of Digital Imaging, 2013, 26 : 563 - 571