Star covers and star partitions of double-split graphs

被引:0
|
作者
Mondal, Joyashree [1 ]
Vijayakumar, S. [1 ]
机构
[1] Indian Inst Informat Technol Design & Mfg IIITDM, Chennai 600127, India
关键词
Star cover; Star partition; Double-split graphs; Polynomial time algorithms; NP-COMPLETENESS; SET; DOMINATION;
D O I
10.1007/s10878-024-01112-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A graph that is isomorphic to the complete bipartite graph K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document} for some r >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 0$$\end{document} is called a star. A collection C={V1, horizontal ellipsis ,Vk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C} = \{V_1, \ldots , V_k\}$$\end{document} of subsets of the vertex set of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document} is called a star cover of G if each set in the collection induces a star and has V1 boolean OR horizontal ellipsis boolean OR Vk=V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1\cup \ldots \cup V_k = V$$\end{document}. A star cover C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document} is called a star partition of G if C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} is also a partition of V. The problem Star Cover takes a graph G as input and asks for a star cover of G of minimum size. The problem Star Partition takes a graph G as input and asks for a star partition of G of minimum size. From Shalu et al. (Discrete Appl Math 319:81-91, 2022), it follows that both these problems are NP-hard even for bipartite graphs. In this paper, we show that both Star Cover and Star Partition have O(n7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n<^>7)$$\end{document} time exact algorithms for double-split graphs. Proving that our algorithms indeed have running time omega(n7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n<^>7)$$\end{document} necessitates the construction of an intricate infinite family of double-split graphs meeting several requirements. Other contributions of the paper are a simple linear time recognition algorithm for double-split graphs and a useful succinct matrix representation for double-split graphs.
引用
收藏
页数:51
相关论文
共 50 条
  • [1] Star covers and star partitions of double-split graphs
    Joyashree Mondal
    S. Vijayakumar
    Journal of Combinatorial Optimization, 2024, 47
  • [2] Star Covers and Star Partitions of Cographs and Butterfly-free Graphs
    Mondal, Joyashree
    Vijayakumar, S.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 224 - 238
  • [3] Star partitions of graphs
    Egawa, Y
    Kano, M
    Kelmans, AK
    JOURNAL OF GRAPH THEORY, 1997, 25 (03) : 185 - 190
  • [4] Star partitions on graphs
    Andreatta, G.
    De Francesco, C.
    De Giovanni, L.
    Serafini, P.
    DISCRETE OPTIMIZATION, 2019, 33 : 1 - 18
  • [5] STAR PARTITIONS AND REGULARITY IN GRAPHS
    ROWLINSON, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 : 247 - 265
  • [6] Star Partitions of Perfect Graphs
    van Bevern, Rene
    Bredereck, Robert
    Bulteau, Laurent
    Chen, Jiehua
    Froese, Vincent
    Niedermeier, Rolf
    Woeginger, Gerhard J.
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT I, 2014, 8572 : 174 - 185
  • [7] FORBIDDEN INDUCED SUBGRAPHS OF DOUBLE-SPLIT GRAPHS
    Alexeev, Boris
    Fradkin, Alexandra
    Kim, Ilhee
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (01) : 1 - 14
  • [8] Disjoint path covers of star graphs
    Qiao, Hongwei
    Meng, Jixiang
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 487
  • [9] On Star Partition of Split Graphs
    Divya, D.
    Vijayakumar, S.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 209 - 223
  • [10] Orthogonal double covers of complete bipartite graphs by the union of a cycle and a star
    El-Shanawany, R. A.
    Higazy, M. S.
    Scapellato, R.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 43 : 281 - 293