The prediction of acute toxicity (LD50) for organophosphorus-based chemical warfare agents (V-series) using toxicology in silico methods

被引:8
|
作者
Noga, Maciej [1 ]
Michalska, Agata [2 ]
Jurowski, Kamil [1 ,3 ]
机构
[1] Inst Med Expertises Lodz, Dept Regulatory & Forens Toxicol, ul Aleksandrowska 67-93, PL-91205 Lodz, Poland
[2] Inst Med Expertises Lodz, ul Aleksandrowska 67-93, PL-91205 Lodz, Poland
[3] Rzeszow Univ, Inst Med Studies, Med Coll, Lab Innovat Toxicol Res & Analyzes, Al Mjr W Kopisto 2a, PL-35959 Rzeszow, Poland
关键词
Chemical warfare agents; Organophosphate; Nerve agents; Acute toxicity; Toxicology in silico; CONCERN TTC; QSAR TOOLBOX; MODELS; THRESHOLD;
D O I
10.1007/s00204-023-03632-y
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Nerve agents are organophosphate chemical warfare agents that exert their toxic effects by irreversibly inhibiting acetylcholinesterase, affecting the breakdown of the neurotransmitter acetylcholine in the synaptic cleft. Due to the risk of exposure to dangerous nerve agents and for animal welfare reasons, in silico methods have been used to assess acute toxicity safely. The next-generation risk assessment (NGRA) is a new approach for predicting toxicological parameters that can meet modern requirements for toxicological research. The present study explains the acute toxicity of the examined V-series nerve agents (n = 9) using QSAR models. Toxicity Estimation Software Tool (ver. 4.2.1 and ver. 5.1.2), QSAR Toolbox (ver. 4.6), and ProTox-II browser application were used to predict the median lethal dose. The Simplified Molecular Input Line Entry Specification (SMILES) was the input data source. The results indicate that the most deadly V-agents were VX and VM, followed by structural VX analogues: RVX and CVX. The least toxic turned out to be V-sub x and Substance 100A. In silico methods for predicting various parameters are crucial for filling data gaps ahead of experimental research and preparing for the upcoming use of nerve agents.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 10 条
  • [1] The prediction of acute toxicity (LD50) for organophosphorus-based chemical warfare agents (V-series) using toxicology in silico methods
    Maciej Noga
    Agata Michalska
    Kamil Jurowski
    Archives of Toxicology, 2024, 98 : 267 - 275
  • [2] The estimation of acute oral toxicity (LD50) of G-series organophosphorus-based chemical warfare agents using quantitative and qualitative toxicology in silico methods
    Maciej Noga
    Agata Michalska
    Kamil Jurowski
    Archives of Toxicology, 2024, 98 : 1809 - 1825
  • [3] The estimation of acute oral toxicity (LD50) of G-series organophosphorus-based chemical warfare agents using quantitative and qualitative toxicology in silico methods
    Noga, Maciej
    Michalska, Agata
    Jurowski, Kamil
    ARCHIVES OF TOXICOLOGY, 2024, 98 (06) : 1809 - 1825
  • [4] The prediction of hydrolysis and biodegradation of organophosphorus-based chemical warfare agents (G-series and V-series) using toxicology in silico methods
    Noga, Maciej
    Michalska, Agata
    Jurowski, Kamil
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 272
  • [5] Application of toxicology in silico methods for prediction of acute toxicity (LD50) for Novichoks
    Noga, Maciej
    Michalska, Agata
    Jurowski, Kamil
    ARCHIVES OF TOXICOLOGY, 2023, 97 (06) : 1691 - 1700
  • [6] Application of toxicology in silico methods for prediction of acute toxicity (LD50) for Novichoks
    Maciej Noga
    Agata Michalska
    Kamil Jurowski
    Archives of Toxicology, 2023, 97 : 1691 - 1700
  • [7] In Silico Prediction of Chemical Acute Oral Toxicity Using MultiClassification Methods
    Li, Xiao
    Chen, Lei
    Cheng, Feixiong
    Wu, Zengrui
    Bian, Hanping
    Xu, Congying
    Li, Weihua
    Liu, Guixia
    Shen, Xu
    Tang, Yun
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (04) : 1061 - 1069
  • [8] Supramolecular Agent-Simulant Correlations for the Luminescence Based Detection of V-Series Chemical Warfare Agents with Trivalent Lanthanide Complexes
    Dennison, Genevieve H.
    Bochet, Christian G.
    Curty, Christophe
    Ducry, Julien
    Nielsen, David J.
    Sambrook, Mark R.
    Zaugg, Andreas
    Johnston, Martin R.
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2016, (09) : 1348 - 1358
  • [9] In Silico Prediction of Chemical Acute Dermal Toxicity Using Explainable Machine Learning Methods
    Lou, Shang
    Yu, Zhuohang
    Huang, Zejun
    Wang, Haoqiang
    Pan, Fei
    Li, Weihua
    Liu, Guixia
    Tang, Yun
    CHEMICAL RESEARCH IN TOXICOLOGY, 2024, 37 (03) : 513 - 524
  • [10] MEIC evaluation of acute systemic toxicity - Part VI. The prediction of human toxicity by rodent LD50 values and results from 61 in vitro methods
    Ekwall, B
    Barile, FA
    Castano, A
    Clemedson, C
    Clothier, RH
    Dierickx, P
    Ekwall, B
    Ferro, M
    Fiskesjo, G
    Garza-Ocanas, L
    Gomez-Lechon, MJ
    Gulden, M
    Hall, T
    Isomaa, B
    Kahru, A
    Kerszman, G
    Kristen, U
    Kunimoto, M
    Karenlampi, S
    Lewan, L
    Loukianov, A
    Ohno, T
    Persoone, G
    Romert, L
    Sawyer, TW
    Shrivastava, R
    Segner, H
    Stammati, A
    Tanaka, N
    Valentino, M
    Walum, E
    Zucco, F
    ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 1998, 26 : 617 - 658