Contrastively generative self-expression model for single-cell and spatial multimodal data

被引:2
|
作者
Zhang, Chengming [2 ]
Yang, Yiwen [4 ]
Tang, Shijie [5 ]
Aihara, Kazuyuki [2 ,6 ,7 ]
Zhang, Chuanchao [3 ,8 ]
Chen, Luonan [1 ,9 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, Ctr Excellencein Mol Cell Sci, Key Lab Syst Biol, Shanghai 200031, Peoples R China
[2] Univ Tokyo, Inst Adv Study, Int Res Ctr Neurointelligence, Tokyo 1130033, Japan
[3] Chinese Acad Sci, Univ Chinese Acad Sci, Key Lab Syst Hlth Sci Zhejiang Prov, Sch Life Sci,Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[4] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
[5] Chinese Acad Sci, CAS Ctr Excellence Mol Cell Sci, Shanghai, Peoples R China
[6] UTokyo, Tokyo, Japan
[7] UTokyo, Int Res Ctr Neurointelligence IRCN, Tokyo, Japan
[8] Chinese Acad Sci, Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Hlth Sci Zhejiang Prov, Hangzhou, Peoples R China
[9] Osaka Sangyo Univ, Osaka, Japan
基金
日本科学技术振兴机构; 中国国家自然科学基金;
关键词
single cell; self-expressive network; multimodal data; integrative analysis; contrast learning; INTEGRATION;
D O I
10.1093/bib/bbad265
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Advances in single-cell multi-omics technology provide an unprecedented opportunity to fully understand cellular heterogeneity. However, integrating omics data from multiple modalities is challenging due to the individual characteristics of each measurement. Here, to solve such a problem, we propose a contrastive and generative deep self-expression model, called single-cell multimodal self-expressive integration (scMSI), which integrates the heterogeneous multimodal data into a unified manifold space. Specifically, scMSI first learns each omics-specific latent representation and self-expression relationship to consider the characteristics of different omics data by deep self-expressive generative model. Then, scMSI combines these omics-specific self-expression relations through contrastive learning. In such a way, scMSI provides a paradigm to integrate multiple omics data even with weak relation, which effectively achieves the representation learning and data integration into a unified framework. We demonstrate that scMSI provides a cohesive solution for a variety of analysis tasks, such as integration analysis, data denoising, batch correction and spatial domain detection. We have applied scMSI on various single-cell and spatial multimodal datasets to validate its high effectiveness and robustness in diverse data types and application scenarios.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] SelfE: Gene Selection via Self-Expression for Single-Cell Data
    Rai, Priyadarshini
    Sengupta, Debarka
    Majumdar, Angshul
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 624 - 632
  • [2] Spatial reconstruction of single-cell gene expression data
    Rahul Satija
    Jeffrey A Farrell
    David Gennert
    Alexander F Schier
    Aviv Regev
    Nature Biotechnology, 2015, 33 : 495 - 502
  • [3] Spatial reconstruction of single-cell gene expression data
    Satija, Rahul
    Farrell, Jeffrey A.
    Gennert, David
    Schier, Alexander F.
    Regev, Aviv
    NATURE BIOTECHNOLOGY, 2015, 33 (05) : 495 - U206
  • [4] Dissection of melanoma and cutaneous lymphoma spatial molecular architecture by multimodal single-cell and spatial transcriptomics with generative AI
    Liu, Zichao
    Song, Xiaofei
    He, Jiang
    He, Justin
    Balasi, Jodi
    Chuang, Jeffrey H.
    Chen, Pei-Ling
    CANCER RESEARCH, 2024, 84 (06)
  • [5] Identification of spatial expression trends in single-cell gene expression data
    Daniel Edsgärd
    Per Johnsson
    Rickard Sandberg
    Nature Methods, 2018, 15 : 339 - 342
  • [6] Identification of spatial expression trends in single-cell gene expression data
    Edsgard, Daniel
    Johnsson, Per
    Sandberg, Rickard
    NATURE METHODS, 2018, 15 (05) : 339 - +
  • [7] Semisupervised Generative Autoencoder for Single-Cell Data
    Trung Ngo Trong
    Mehtonen, Juha
    Gonzalez, Gerardo
    Kramer, Roger
    Hautamaki, Ville
    Heinaniemi, Merja
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2020, 27 (08) : 1190 - 1203
  • [8] Identifying signaling genes in spatial single-cell expression data
    Li, Dongshunyi
    Ding, Jun
    Bar-Joseph, Ziv
    BIOINFORMATICS, 2021, 37 (07) : 968 - 975
  • [9] Integrated analysis of multimodal single-cell data
    Hao, Yuhan
    Hao, Stephanie
    Andersen-Nissen, Erica
    Mauck, William M. I. I. I. I. I. I.
    Zheng, Shiwei
    Butler, Andrew
    Lee, Maddie J.
    Wilk, Aaron J.
    Darby, Charlotte
    Zager, Michael
    Hoffman, Paul
    Stoeckius, Marlon
    Papalexi, Efthymia
    Mimitou, Eleni P.
    Jain, Jaison
    Srivastava, Avi
    Stuart, Tim
    Fleming, Lamar M.
    Yeung, Bertrand
    Rogers, Angela J.
    McElrath, Juliana M.
    Blish, Catherine A.
    Gottardo, Raphael
    Smibert, Peter
    Satija, Rahul
    CELL, 2021, 184 (13) : 3573 - +
  • [10] Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope
    Wan, Xiaomeng
    Xiao, Jiashun
    Tam, Sindy Sing Ting
    Cai, Mingxuan
    Sugimura, Ryohichi
    Wang, Yang
    Wan, Xiang
    Lin, Zhixiang
    Wu, Angela Ruohao
    Yang, Can
    NATURE COMMUNICATIONS, 2023, 14 (01)