In-Network ML Feature Computation for Malicious Traffic Detection

被引:0
|
作者
Amado, Joao R. [1 ]
Pereira, Francisco [2 ]
Signorello, Salvatore [2 ]
Correia, Miguel [1 ]
Ramos, Fernando M. V. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, INESC ID, Lisbon, Portugal
[2] Telefon Res, Lisbon, Portugal
关键词
D O I
10.1145/3603269.3610866
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present Peregrine, a malicious traffic detector that offloads part of its computation to a programmable switch. The idea is to partition detection, by moving the ML feature computation module from a middlebox server to a switch data plane. The key innovation unlocked-computing the ML input features over all traffic-results in a significant improvement in detection performance: in our evaluation, up to 5.7x over the state of the art.
引用
收藏
页码:1105 / 1107
页数:3
相关论文
共 50 条
  • [1] FAFS: A Fuzzy Association Feature Selection Method for Network Malicious Traffic Detection
    Feng, Yongxin
    Kang, Yingyun
    Zhang, Hao
    Zhang, Wenbo
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (01): : 240 - 259
  • [2] IncBricks: Toward In-Network Computation with an In-Network Cache
    Liu, Ming
    Luo, Liang
    Nelson, Jacob
    Ceze, Luis
    Krishnamurthy, Arvind
    Atreya, Kishore
    ACM SIGPLAN NOTICES, 2017, 52 (04) : 795 - 809
  • [3] IncBricks: Toward In-Network Computation with an In-Network Cache
    Liu, Ming
    Luo, Liang
    Nelson, Jacob
    Ceze, Luis
    Krishnamurthy, Arvind
    Atreya, Kishore
    TWENTY-SECOND INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS (ASPLOS XXII), 2017, : 795 - 809
  • [4] IncBricks: Toward In-Network Computation with an In-Network Cache
    Liu, Ming
    Luo, Liang
    Nelson, Jacob
    Ceze, Luis
    Krishnamurthy, Arvind
    Atreya, Kishore
    OPERATING SYSTEMS REVIEW, 2017, 51 (02) : 795 - 809
  • [5] Deep-Feature-Based Autoencoder Network for Few-Shot Malicious Traffic Detection
    He, Mingshu
    Wang, Xiaojuan
    Zhou, Junhua
    Xi, Yuanyuan
    Jin, Lei
    Wang, Xinlei
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [6] Alchemy: Stochastic Feature Regeneration for Malicious Network Traffic Classification
    Hu, Bo
    Kumagai, Atsutoshi
    Kamiya, Kazunori
    Takahashi, Kenji
    Dalek, Daniel
    Soderstrom, Ola
    Okada, Kazuya
    Sekiya, Yuji
    Nakao, Akihiro
    2019 IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2019, : 346 - 351
  • [7] ECNet: Robust Malicious Network Traffic Detection With Multi-View Feature and Confidence Mechanism
    Han, Xueying
    Liu, Song
    Liu, Junrong
    Jiang, Bo
    Lu, Zhigang
    Liu, Baoxu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 6871 - 6885
  • [8] Effective DDoS Mitigation via ML-Driven In-Network Traffic Shaping
    Zhao, Ziming
    Liu, Zhuotao
    Chen, Huan
    Zhang, Fan
    Song, Zhuoxue
    Li, Zhaoxuan
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 4271 - 4289
  • [9] Frequency Domain Feature Based Robust Malicious Traffic Detection
    Fu, Chuanpu
    Li, Qi
    Shen, Meng
    Xu, Ke
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2023, 31 (01) : 452 - 467
  • [10] Feature flow: In-network feature flow estimation for video object detection
    Jin, Ruibing
    Lin, Guosheng
    Wen, Changyun
    Wang, Jianliang
    Liu, Fayao
    PATTERN RECOGNITION, 2022, 122