A nonstationary iterated quasi-boundary value method for reconstructing the source term in a time-space fractional diffusion equation

被引:1
|
作者
Zhang, Yun [1 ]
Feng, Xiaoli [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-space fractional diffusion equation; Inverse source problem; Nonstationary iterated quasi-boundary; value method; Convergence rates; INVERSE SOURCE PROBLEM; DEPENDENT SOURCE; ANOMALOUS TRANSPORT; UNKNOWN SOURCE; REGULARIZATION; BACKWARD; MODELS;
D O I
10.1016/j.cam.2023.115612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An inverse source problem of a time-space fractional diffusion equation is considered in this paper. Due to the ill-posedness of the inverse problem, we propose a novel nonstationary iterated quasi-boundary value regularization method for reconstructing the source function, and show that the regularization problem is well-posed. The convergence rates are established under a priori and a posterior choice rules of regularization parameters, respectively. A numerical scheme for solving the regularization problem in one-dimensional case is derived from a finite difference method. Moreover, various of numerical examples are performed to test the efficiency of our method.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] The Quasi-Boundary Regularization Method for Recovering the Initial Value in a Nonlinear Time-Space Fractional Diffusion Equation
    Li, Dun-Gang
    Chen, Yong-Gang
    Gao, Yin-Xia
    Yang, Fan
    Xu, Jian-Ming
    Li, Xiao-Xiao
    SYMMETRY-BASEL, 2023, 15 (04):
  • [2] Reconstruction of a Space-dependent Source Term for a Time Fractional Diffusion Equation by a Modified Quasi-boundary Value Regularization Method
    Ruan, Zhousheng
    Wan, Guanghong
    Zhang, Wen
    TAIWANESE JOURNAL OF MATHEMATICS, 2024,
  • [3] THE QUASI-BOUNDARY VALUE METHOD FOR IDENTIFYING THE INITIAL VALUE OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    杨帆
    张燕
    刘霄
    李晓晓
    ActaMathematicaScientia, 2020, 40 (03) : 641 - 658
  • [4] The Quasi-Boundary Value Method for Identifying the Initial Value of the Space-Time Fractional Diffusion Equation
    Yang, Fan
    Zhang, Yan
    Liu, Xiao
    Li, Xiaoxiao
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (03) : 641 - 658
  • [5] The Quasi-Boundary Value Method for Identifying the Initial Value of the Space-Time Fractional Diffusion Equation
    Fan Yang
    Yan Zhang
    Xiao Liu
    Xiaoxiao Li
    Acta Mathematica Scientia, 2020, 40 : 641 - 658
  • [6] SOLVING AN INVERSE SOURCE PROBLEM FOR A TIME FRACTIONAL DIFFUSION EQUATION BY A MODIFIED QUASI-BOUNDARY VALUE METHOD
    Ruan, Zhousheng
    Zhang, Sen
    Xiong, Sican
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (04): : 669 - 682
  • [7] A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation
    Wei, Ting
    Wang, Jungang
    APPLIED NUMERICAL MATHEMATICS, 2014, 78 : 95 - 111
  • [8] A generalized quasi-boundary value method for recovering a source in a fractional diffusion-wave equation
    Wei, Ting
    Luo, Yuhua
    INVERSE PROBLEMS, 2022, 38 (04)
  • [9] Modified quasi-boundary value method for the multidimensional nonhomogeneous backward time fractional diffusion equation
    Jayakumar, Kokila
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8363 - 8378
  • [10] The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation
    Fan Yang
    Qu Pu
    Xiao-Xiao Li
    Numerical Algorithms, 2021, 87 : 1229 - 1255