An extension of Venkatesh's converse theorem to the Selberg class

被引:0
|
作者
Booker, Andrew R. [1 ]
Farmer, Michael [1 ]
Lee, Min [1 ]
机构
[1] Univ Bristol, Sch Math, Woodland Rd, Bristol BS8 1UG, England
关键词
D O I
10.1017/fms.2023.22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend Venkatesh's proof of the converse theorem for classical holomorphic modular forms to arbitrary level and character. The method of proof, via the Petersson trace formula, allows us to treat arbitrary degree 2 gamma factors of Selberg class type.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A converse theorem for degree 2 elements of the Selberg class with restricted gamma factor
    Farmer, M. I. C. H. A. E. L.
    ACTA ARITHMETICA, 2022, : 41 - 52
  • [2] A conjectural extension of Hecke's converse theorem
    Bettin, Sandro
    Bober, Jonathan W.
    Booker, Andrew R.
    Conrey, Brian
    Lee, Min
    Molteni, Giuseppe
    Oliver, Thomas
    Platt, David J.
    Steiner, Raphael S.
    RAMANUJAN JOURNAL, 2018, 47 (03): : 659 - 684
  • [3] A conjectural extension of Hecke’s converse theorem
    Sandro Bettin
    Jonathan W. Bober
    Andrew R. Booker
    Brian Conrey
    Min Lee
    Giuseppe Molteni
    Thomas Oliver
    David J. Platt
    Raphael S. Steiner
    The Ramanujan Journal, 2018, 47 : 659 - 684
  • [4] On the prime number theorem for the Selberg class
    Kaczorowski, J
    Perelli, A
    ARCHIV DER MATHEMATIK, 2003, 80 (03) : 255 - 263
  • [5] On the prime number theorem for the Selberg class
    J. Kaczorowski
    A. Perelli
    Archiv der Mathematik, 2003, 80 (3) : 255 - 263
  • [6] Converse theorems: From the Riemann zeta function to the Selberg class
    Perelli A.
    Bollettino dell'Unione Matematica Italiana, 2017, 10 (1) : 29 - 53
  • [7] A uniqueness theorem for functions in the extended Selberg class
    Steven M. Gonek
    Jaeho Haan
    Haseo Ki
    Mathematische Zeitschrift, 2014, 278 : 995 - 1004
  • [8] A uniqueness theorem for functions in the extended Selberg class
    Gonek, Steven M.
    Haan, Jaeho
    Ki, Haseo
    MATHEMATISCHE ZEITSCHRIFT, 2014, 278 (3-4) : 995 - 1004
  • [9] The converse of Abel’s theorem
    V. A. Kisun’ko
    Doklady Mathematics, 2006, 73 : 238 - 240
  • [10] The converse of Schur's theorem
    Niroomand, Peyman
    ARCHIV DER MATHEMATIK, 2010, 94 (05) : 401 - 403