ClusROC: An R Package for ROC Analysis in Three-Class Classification Problems for Clustered Data

被引:0
|
作者
Duc-Khanh To [1 ,2 ]
Adimari, Gianfranco [1 ]
Chiogna, Monica [3 ]
机构
[1] Univ Padua, Dept Stat Sci, Via C Battisti 241, I-35121 Padua, Italy
[2] Dept Informat & Engn, Via Gradenigo,6-b, I-35131 Padua, Italy
[3] Univ Bologna, Dept Stat Sci Paolo Fortunati, Via Belle Arti 41, I-40126 Bologna, Italy
来源
R JOURNAL | 2023年 / 15卷 / 01期
关键词
BOX-COX TRANSFORMATION; ESTIMATING DIAGNOSTIC-ACCURACY; LONGITUDINAL DATA; SURFACE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces an R package for ROC analysis in three-class classification problems, for clustered data in the presence of covariates, named ClusROC. The clustered data that we address have some hierarchical structure, i.e., dependent data deriving, for example, from longitudinal studies or repeated measurements. This package implements point and interval covariate-specific estimation of the true class fractions at a fixed pair of thresholds, the ROC surface, the volume under the ROC surface, and the optimal pairs of thresholds. We illustrate the usage of the implemented functions through two practical examples from different fields of research.
引用
收藏
页码:254 / 270
页数:17
相关论文
共 50 条