Whole-genome sequencing and analysis of Chryseobacterium arthrosphaerae from Rana nigromaculata

被引:0
|
作者
Zhu, Lihong [1 ]
Liu, Hao [2 ]
Li, Xiaohui [1 ]
Shi, Yuefeng [1 ]
Yin, Xiaoliang [3 ]
Pi, Xionge [1 ]
机构
[1] Zhejiang Acad Agr Sci, Inst Plant Protect & Microbiol, Hangzhou 310021, Peoples R China
[2] Tianjin Univ Sci & Technol, Coll Bioengn, Tianjin 300457, Peoples R China
[3] Business Integrated Serv Ctr Donghu Town, Shaoxing 312001, Zhejiang, Peoples R China
关键词
Rana nigromaculata; Chryseobacterium arthrosphaerae; Whole-genome sequence; Bioinformatics analysis; ANNOTATION; DATABASE; MODEL;
D O I
10.1186/s12866-024-03223-6
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Chryseobacterium arthrosphaerae strain FS91703 was isolated from Rana nigromaculata in our previous study. To investigate the genomic characteristics, pathogenicity-related genes, antimicrobial resistance, and phylogenetic relationship of this strain, PacBio RS II and Illumina HiSeq 2000 platforms were used for the whole genome sequencing. The genome size of strain FS91703 was 5,435,691 bp and GC content was 37.78%. A total of 4,951 coding genes were predicted; 99 potential virulence factors homologs were identified. Analysis of antibiotic resistance genes revealed that strain FS91703 harbored 10 antibiotic resistance genes in 6 categories and 2 multidrug-resistant efflux pump genes, including adeG and farA. Strain FS91703 was sensitive to beta-lactam combination drugs, cephem, monobactam and carbapenems, intermediately resistant to phenicol, and resistant to penicillin, aminoglycosides, tetracycline, fluoroquinolones, and folate pathway inhibitors. Phylogenetic analysis revealed that strain FS91703 and C. arthrosphaerae CC-VM-7(T) were on the same branch of the phylogenetic tree based on 16 S rRNA; the ANI value between them was 96.99%; and the DDH values were 80.2, 72.2 and 81.6% by three default calculation formulae. These results suggested that strain FS91703 was a species of C. arthrosphaerae. Pan-genome analysis showed FS91703 had 566 unique genes compared with 13 other C. arthrosphaerae strains, and had a distant phylogenetic relationship with the other C. arthrosphaerae strains of the same branch in phylogenetic tree based on orthologous genes. The results of this study suggest that strain FS91703 is a multidrug-resistant and highly virulent bacterium, that differs from other C. arthrosphaerae strains at the genomic level. The knowledge about the genomic characteristics and antimicrobial resistance of strain FS91703 provides valuable insights into this rare species, as well as guidance for the treatment of the disease caused by FS91703 in Rana nigromaculata.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Whole-genome sequencing and analysis of Chryseobacterium arthrosphaerae from Rana nigromaculata
    Lihong Zhu
    Hao Liu
    Xiaohui Li
    Yuefeng Shi
    Xiaoliang Yin
    Xionge Pi
    BMC Microbiology, 24
  • [2] Draft Whole-Genome Sequences of Chryseobacterium piscicola and Chryseobacterium shigense
    Stine, Cynthia B.
    Li, Cong
    Crosby, Tina C.
    Hasbrouck, Nicholas R.
    Lam, Claudia
    Tadesse, Daniel A.
    GENOME ANNOUNCEMENTS, 2018, 6 (20)
  • [3] Whole-Genome Sequencing in Outbreak Analysis
    Gilchrist, Carol A.
    Turner, Stephen D.
    Riley, Margaret F.
    Petri, William A., Jr.
    Hewlett, Erik L.
    CLINICAL MICROBIOLOGY REVIEWS, 2015, 28 (03) : 541 - 563
  • [4] Whole-genome sequencing
    Morris, Huw R.
    Houlden, Henry
    Polke, James
    PRACTICAL NEUROLOGY, 2021, 21 (04) : 322 - +
  • [5] Fitting whole-genome sequencing analysis for metastasis
    Julia Simundza
    Nature Cancer, 2021, 2 : 1290 - 1290
  • [6] Fitting whole-genome sequencing analysis for metastasis
    Simundza, Julia
    NATURE CANCER, 2021, 2 (12) : 1290 - 1290
  • [7] Whole-genome sequencing analysis of the cardiometabolic proteome
    Gilly, Arthur
    Park, Young-Chan
    Png, Grace
    Barysenka, Andrei
    Fischer, Iris
    Bjornland, Thea
    Southam, Lorraine
    Suveges, Daniel
    Neumeyer, Sonja
    Rayner, N. William
    Tsafantakis, Emmanouil
    Karaleftheri, Maria
    Dedoussis, George
    Zeggini, Eleftheria
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [8] Whole-genome sequencing analysis of the cardiometabolic proteome
    Arthur Gilly
    Young-Chan Park
    Grace Png
    Andrei Barysenka
    Iris Fischer
    Thea Bjørnland
    Lorraine Southam
    Daniel Suveges
    Sonja Neumeyer
    N. William Rayner
    Emmanouil Tsafantakis
    Maria Karaleftheri
    George Dedoussis
    Eleftheria Zeggini
    Nature Communications, 11
  • [9] Whole-genome sequencing analysis of brain tumors
    Suzuki, Hiromichi
    Nakashima, Takuma
    Funakoshi, Yusuke
    Kanamori, Masayuki
    Shibahara, Ichiyo
    Suzuki, Tomonari
    Kinoshita, Manabu
    Sonoda, Yukihiko
    Arakawa, Yoshiki
    Nagane, Motoo
    Tanaka, Shota
    Ishida, Joji
    Saito, Ryuta
    Hanaya, Ryosuke
    Yoshimoto, Koji
    Narita, Yoshitaka
    CANCER SCIENCE, 2025, 116 : 626 - 626
  • [10] Analysis of the breadwheat genome using whole-genome shotgun sequencing
    Brenchley, Rachel
    Spannagl, Manuel
    Pfeifer, Matthias
    Barker, Gary L. A.
    D'Amore, Rosalinda
    Allen, Alexandra M.
    McKenzie, Neil
    Kramer, Melissa
    Kerhornou, Arnaud
    Bolser, Dan
    Kay, Suzanne
    Waite, Darren
    Trick, Martin
    Bancroft, Ian
    Gu, Yong
    Huo, Naxin
    Luo, Ming-Cheng
    Sehgal, Sunish
    Gill, Bikram
    Kianian, Sharyar
    Anderson, Olin
    Kersey, Paul
    Dvorak, Jan
    McCombie, W. Richard
    Hall, Anthony
    Mayer, Klaus F. X.
    Edwards, Keith J.
    Bevan, Michael W.
    Hall, Neil
    NATURE, 2012, 491 (7426) : 705 - 710