A regularized MM estimate for interval-valued regression

被引:2
|
作者
Kong, Lingtao [1 ]
Gao, Xianwei [1 ]
机构
[1] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval-valued data; Outliers; MM estimate; Regularized parameter; Interval crossing; LINEAR-REGRESSION; ROBUST REGRESSION; MODELS; SERIES; ALGORITHM;
D O I
10.1016/j.eswa.2023.122044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In real life, we usually encounter with interval-valued data when analyzing imprecise data or massive data sets. In this paper, a regularized interval MM estimate (RIMME) for interval-valued regression is proposed. In order to mitigate the mathematical incoherence of the predicted intervals, a regularized term is introduced to penalize the number of crossing intervals. Therefore, the proposed method can achieve a good balance between the prediction accuracy and mathematical coherence of the predicted intervals. To evaluate the performance of RIMME, a simulation study and three real data sets are examined. Experimental results illustrate that our method outperforms five commonly used methods in almost all cases.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Regression analysis for interval-valued data
    Billard, L
    Diday, E
    DATA ANALYSIS, CLASSIFICATION, AND RELATED METHODS, 2000, : 369 - 374
  • [2] Linear regression with interval-valued data
    Sun, Yan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [3] Constrained Regression for Interval-Valued Data
    Gonzalez-Rivera, Gloria
    Lin, Wei
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (04) : 473 - 490
  • [4] Resistant Regression for Interval-Valued Data
    Renan, Jobson
    Silva, Jornandes Dias
    Galdino, Sergio
    2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 277 - 281
  • [5] Quantile Regression of Interval-Valued Data
    Fagundes, Roberta A. A.
    de Souza, Renata M. C. R.
    Soares, Yanne M. G.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2586 - 2591
  • [6] Clustering regression based on interval-valued fuzzy outputs and interval-valued fuzzy parameters
    Arefi, Mohsen
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (03) : 1339 - 1351
  • [7] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60
  • [8] Partition of Interval-Valued Observations Using Regression
    Fei Liu
    L. Billard
    Journal of Classification, 2022, 39 : 55 - 77
  • [9] Compositional Linear Regression on Interval-valued Data
    Pekaslan, Direnc
    Wagner, Christian
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [10] Regression Models for Symbolic Interval-Valued Variables
    Chacon, Jose Emmanuel
    Rodriguez, Oldemar
    ENTROPY, 2021, 23 (04)