Identifying Individuals at High Risk for HIV and Sexually Transmitted Infections With an Artificial Intelligence-Based Risk Assessment Tool

被引:10
|
作者
Latt, Phyu M. [1 ,2 ]
Soe, Nyi N. [1 ,2 ]
Xu, Xianglong [1 ,3 ]
Ong, Jason J. [4 ]
Chow, Eric P. F. [2 ,4 ,5 ]
Fairley, Christopher K. [2 ,4 ]
Zhang, Lei [1 ,2 ,6 ,7 ]
机构
[1] Alfred Hlth, Melbourne Sexual Hlth Ctr, Artificial Intelligence & Modelling Epidemiol Prog, Melbourne, Australia
[2] Monash Univ, Fac Med Nursing & Hlth Sci, Cent Clin Sch, 99 Commercial Rd, Melbourne, Vic 3004, Australia
[3] Shanghai Univ Tradit Chinese Med, Sch Publ Hlth, Shanghai, Peoples R China
[4] Alfred Hlth, Melbourne Sexual Hlth Ctr, Melbourne, Vic, Australia
[5] Univ Melbourne, Ctr Epidemiol & Biostat, Melbourne Sch Populat & Global Hlth, Melbourne, Australia
[6] Nanjing Med Univ, Childrens Hosp, Clin Med Res Ctr, Nanjing 210008, Jiangsu, Peoples R China
[7] Alfred Hlth, Melbourne Sexual Hlth Ctr, Artificial Intelligence & Modelling Epidemiol Prog, 580 Swanston St, Carlton, Vic 3053, Australia
来源
OPEN FORUM INFECTIOUS DISEASES | 2024年 / 11卷 / 03期
基金
英国医学研究理事会;
关键词
HIV; machine learning; risk assessment tool; sexually transmitted infections; STIs; YOUDEN INDEX; MEN; SEX;
D O I
10.1093/ofid/ofae011
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background We have previously developed an artificial intelligence-based risk assessment tool to identify the individual risk of HIV and sexually transmitted infections (STIs) in a sexual health clinical setting. Based on this tool, this study aims to determine the optimal risk score thresholds to identify individuals at high risk for HIV/STIs.Methods Using 2008-2022 data from 216 252 HIV, 227 995 syphilis, 262 599 gonorrhea, and 320 355 chlamydia consultations at a sexual health center, we applied MySTIRisk machine learning models to estimate infection risk scores. Optimal cutoffs for determining high-risk individuals were determined using Youden's index.Results The HIV risk score cutoff for high risk was 0.56, with 86.0% sensitivity (95% CI, 82.9%-88.7%) and 65.6% specificity (95% CI, 65.4%-65.8%). Thirty-five percent of participants were classified as high risk, which accounted for 86% of HIV cases. The corresponding cutoffs were 0.49 for syphilis (sensitivity, 77.6%; 95% CI, 76.2%-78.9%; specificity, 78.1%; 95% CI, 77.9%-78.3%), 0.52 for gonorrhea (sensitivity, 78.3%; 95% CI, 77.6%-78.9%; specificity, 71.9%; 95% CI, 71.7%-72.0%), and 0.47 for chlamydia (sensitivity, 68.8%; 95% CI, 68.3%-69.4%; specificity, 63.7%; 95% CI, 63.5%-63.8%). High-risk groups identified using these thresholds accounted for 78% of syphilis, 78% of gonorrhea, and 69% of chlamydia cases. The odds of positivity were significantly higher in the high-risk group than otherwise across all infections: 11.4 (95% CI, 9.3-14.8) times for HIV, 12.3 (95% CI, 11.4-13.3) for syphilis, 9.2 (95% CI, 8.8-9.6) for gonorrhea, and 3.9 (95% CI, 3.8-4.0) for chlamydia.Conclusions Risk scores generated by the AI-based risk assessment tool MySTIRisk, together with Youden's index, are effective in determining high-risk subgroups for HIV/STIs. The thresholds can aid targeted HIV/STI screening and prevention.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Identifying individuals at high risk for HIV and sexually transmitted infections with an artificial intelligence-based risk assessment tool
    Latt, P. M.
    Soe, N. N.
    Xu, X.
    Ong, J.
    Chow, E. P. F.
    Fairley, C. K.
    Zhang, L.
    SEXUAL HEALTH, 2024, 21 (04) : 57 - 57
  • [2] Preferences for attributes of an artificial intelligence-based risk assessment tool for HIV and sexually transmitted infections: a discrete choice experiment
    Latt, Phyu M.
    Soe, Nyi N.
    King, Alicia J.
    Lee, David
    Phillips, Tiffany R.
    Xu, Xianglong
    Chow, Eric P. F.
    Fairley, Christopher K.
    Zhang, Lei
    Ong, Jason J.
    BMC PUBLIC HEALTH, 2024, 24 (01)
  • [3] Preferences for attributes of an artificial intelligence-based risk assessment tool for HIV and sexually transmitted infections: a discrete choice experiment
    Latt, Phyu M.
    Soe, Nyi N.
    King, Alicia J.
    Lee, David
    Phillips, Tiffany R.
    Xu, Xianglong
    Chow, Eric P. F.
    Fairley, Christopher K.
    Zhang, Lei
    Ong, Jason J.
    SEXUAL HEALTH, 2024, 21 (04) : 89 - 90
  • [4] Assessment of attitudes and practices of providers of services for individuals at high risk of HIV and sexually transmitted infections in Karnataka, south India
    Jayanna, Krishnamurthy
    Washington, Reynold G.
    Moses, Stephen
    Kudur, Prakash
    Issac, Shajy
    Balu, P. S.
    Badiger, Sanjeev
    Mendonca, Vivian
    Bhavimani, Santosh
    Banandur, Pradeep
    SEXUALLY TRANSMITTED INFECTIONS, 2010, 86 (02) : 131 - 135
  • [5] Identifying youth at high risk for sexually transmitted infections in community-based settings using a risk prediction tool: a validation study
    Kranzer, Katharina
    Simms, Victoria
    Dauya, Ethel
    Olaru, Ioana D.
    Chikwari, Chido Dziva
    Martin, Kevin
    Redzo, Nicol
    Bandason, Tsitsi
    Tembo, Mandikudza
    Francis, Suzanna C.
    Weiss, Helen A.
    Hayes, Richard J.
    Mavodza, Constancia
    Apollo, Tsitsi
    Ncube, Gertrude
    Machiha, Anna
    Ferrand, Rashida Abbas
    BMC INFECTIOUS DISEASES, 2021, 21 (01)
  • [6] Identifying youth at high risk for sexually transmitted infections in community-based settings using a risk prediction tool: a validation study
    Katharina Kranzer
    Victoria Simms
    Ethel Dauya
    Ioana D. Olaru
    Chido Dziva Chikwari
    Kevin Martin
    Nicol Redzo
    Tsitsi Bandason
    Mandikudza Tembo
    Suzanna C. Francis
    Helen A. Weiss
    Richard J. Hayes
    Constancia Mavodza
    Tsitsi Apollo
    Gertrude Ncube
    Anna Machiha
    Rashida Abbas Ferrand
    BMC Infectious Diseases, 21
  • [7] Association of HIV Preexposure Prophylaxis With Incidence of Sexually Transmitted Infections Among Individuals at High Risk of HIV Infection
    Traeger, Michael W.
    Cornelisse, Vincent J.
    Asselin, Jason
    Price, Brian
    Roth, Norman J.
    Willcox, Jeff
    Tee, Ban Kiem
    Fairley, Christopher K.
    Chang, Christina C.
    Armishaw, Jude
    Vujovic, Olga
    Penn, Matthew
    Cundill, Pauline
    Forgan-Smith, George
    Gall, John
    Pickett, Claire
    Mak, Anne
    Spelman, Tim D.
    Long Nguyen
    Murphy, Dean A.
    Ryan, Kathleen E.
    El-Hayek, Carol
    West, Michael
    Ruth, Simon
    Batrouney, Colin
    Lockwood, John T.
    Hoy, Jennifer F.
    Hellard, Margaret E.
    Stoove, Mark A.
    Wright, Edwina J.
    de Wit, John
    Lal, Luxi
    Audsley, Jennifer
    Duncan, Alison
    Sasadeusz, Joe
    Allan, Brent
    Whelan, Michael
    McPhail, Daniel
    Wilson, David
    Holt, Martin
    Williams, Chris
    Wesselingh, Steve
    Ward, James
    Gallant, Danny
    Ward, Alison
    Chong, Alistair
    McKinnon, Katharine
    Aguirre, Ivette
    Read, Timothy
    Moore, Richard
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 321 (14): : 1380 - 1390
  • [8] Prevention and treatment of sexually transmitted infections in high-risk individuals, including patients with HIV infection
    del Romero, Jorge
    Garcia-Perez, Jorge N.
    Espasa-Soley, Mateu
    ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA, 2019, 37 (02): : 117 - 126
  • [9] Adolescent Sexually Transmitted Infections and Risk for Subsequent HIV
    Newbern, E. Claire
    Anschuetz, Greta L.
    Eberhart, Michael G.
    Salmon, Melinda E.
    Brady, Kathleen A.
    De Los Reyes, Andrew
    Baker, Jane M.
    Asbel, Lenore E.
    Johnson, Caroline C.
    Schwarz, Donald F.
    AMERICAN JOURNAL OF PUBLIC HEALTH, 2013, 103 (10) : 1874 - 1881
  • [10] Artificial intelligence-based diagnosis: distinguishing early syphilis from other sexually transmitted infections (STIs)
    Sun, J.
    Li, Y.
    Yu, Z.
    Towns, J.
    Soe, N.
    Latt, P.
    Zhang, L.
    Ge, Z.
    Fairley, C.
    Ong, J.
    Zhang, L.
    SEXUAL HEALTH, 2024, 21 (04) : 1 - 2