Machine Learning-Based Real-Time Metasurface Reconfiguration

被引:0
|
作者
Su, Feng [1 ]
Luong, David [1 ]
Lam, Ian [1 ]
Rajan, Sreeraman [1 ]
Gupta, Shulabh [2 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
[2] Carleton Univ, Dept Elect, Ottawa, ON, Canada
关键词
Metasurface; Machine learning; Multi-output regression; Random forest; Neural network; Stacked generalization;
D O I
10.1109/SAS58821.2023.10254166
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Reconfiguration of a programmable coupled resonator metasurface is challenging. Due to its complexity, scalability to real-world applications using known techniques is not feasible. In this paper, we explore this challenge using a machine learning approach. We investigate two well-known machine learning regression models (random forest and neural network), as well as a combination of the two using stacked generalization, in order to predict the inputs required to generate a desired far-field radiation pattern of a metasurface. Preliminary results indicate that a random forest and a neural network in a stacked generalization ensemble outperforms separate implementations of those models.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Machine learning-based real-time daylight analysis in buildings
    Luan Le-Thanh
    Ha Nguyen-Thi-Viet
    Lee, Jaehong
    Nguyen-Xuan, H.
    JOURNAL OF BUILDING ENGINEERING, 2022, 52
  • [2] Machine learning-based real-time tracking for concrete vibration
    Quan, Yuhu
    Wang, Fenglai
    AUTOMATION IN CONSTRUCTION, 2022, 140
  • [3] Machine Learning-Based Real-Time Indoor Landmark Localization
    Zhao, Zhongliang
    Carrera, Jose
    Niklaus, Joel
    Braun, Torsten
    WIRED/WIRELESS INTERNET COMMUNICATIONS (WWIC 2018), 2018, 10866 : 95 - 106
  • [4] Real-time machine learning-based approach for pothole detection
    Egaji, Oche Alexander
    Evans, Gareth
    Griffiths, Mark Graham
    Islas, Gregory
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184
  • [5] Real-time operation of distribution network: A deep reinforcement learning-based reconfiguration approach
    Bui, Van-Hai
    Su, Wencong
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 50
  • [6] Machine Learning-Based Real-Time Fraud Detection in Financial Transactions
    Manoharan, Geetha
    Dharmaraj, A.
    Sheela, S. Christina
    Naidu, Kanchan
    Chavva, Madhu
    Chaudhary, Jitendra Kumar
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [7] A Machine Learning-Based Scalable Approach For Real-Time Surgery Simulation
    Deo, Dhanannjay
    De, Suvranu
    MEDICINE MEETS VIRTUAL REALITY 17 - NEXTMED: DESIGN FOR/THE WELL BEING, 2009, 142 : 71 - 76
  • [8] Towards Real-time Adaptable Machine Learning-based Photoinjector Shaping
    Hirschman, Jack
    Lemons, Randy
    Coffee, Ryan
    Belli, Federico
    Carbajo, Sergio
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [9] Machine Learning-Based Real-time Task Scheduling for Apache Storm
    Wu, Cheng-Ying
    Zhao, Qi
    Cheng, Cheng-Yu
    Yang, Yuchen
    Qureshi, Muhammad A.
    Liu, Hang
    Chen, Genshe
    SENSORS AND SYSTEMS FOR SPACE APPLICATIONS XVII, 2024, 13062
  • [10] An Intelligent Machine Learning-Based Real-Time Public Transport System
    Skhosana, Menzi
    Ezugwu, Absalom E.
    Rana, Nadim
    Abdulhamid, Shafi'i M.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT VI, 2020, 12254 : 649 - 665