A hybrid convolutional neural network with long short-term memory for statistical arbitrage

被引:3
|
作者
Eggebrecht, P. [1 ]
Luetkebohmert, E. [1 ]
机构
[1] Univ Freiburg, Inst Econ Res, Dept Quantitat Finance, Rempartstr 16, D-79098 Freiburg, Germany
关键词
Statistical arbitrage; Pairs trading; Deep learning; Convolutional neural network; Long short-term memory; TRADING STRATEGY; PAIRS; PREDICTION; OUTRANKING; SELECTION; MODELS; LSTM;
D O I
10.1080/14697688.2023.2181707
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose a CNN-LSTM deep learning model, which has been trained to classify profitable from unprofitable spread sequences of cointegrated stocks, for a large scale market backtest ranging from January 1991 to December 2017. We show that the proposed model can achieve high levels of accuracy and successfully derives features from the market data. We formalize and implement a trading strategy based on the model output which generates significant risk-adjusted excess returns that are orthogonal to market risks. The generated out-of-sample Sharpe ratio and alpha coefficient significantly outperform the reference model, which is based on a standard deviation rule, even after accounting for transaction costs.
引用
收藏
页码:595 / 613
页数:19
相关论文
共 50 条
  • [1] Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network
    Wu, Daxin
    Hu, Zhubin
    Li, Jiebo
    Sun, Xiang
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (22):
  • [2] Driver drowsiness detection using hybrid convolutional neural network and long short-term memory
    Guo, Jing-Ming
    Markoni, Herleeyandi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (20) : 29059 - 29087
  • [3] Driver drowsiness detection using hybrid convolutional neural network and long short-term memory
    Jing-Ming Guo
    Herleeyandi Markoni
    Multimedia Tools and Applications, 2019, 78 : 29059 - 29087
  • [4] Hybrid Convolutional Neural Network and Long Short-Term Memory Approach for Facial Expression Recognition
    Kavitha, M. N.
    RajivKannan, A.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (01): : 689 - 704
  • [5] A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network
    Tian, Chujie
    Ma, Jian
    Zhang, Chunhong
    Zhan, Panpan
    ENERGIES, 2018, 11 (12)
  • [6] Convolutional long short-term memory neural network for groundwater change prediction
    Patra, Sumriti Ranjan
    Chu, Hone-Jay
    FRONTIERS IN WATER, 2024, 6
  • [7] A Convolutional Long Short-Term Memory Neural Network Based Prediction Model
    Tian, Y. H.
    Wu, Q.
    Zhang, Y.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (05) : 1 - 12
  • [8] Damage Identification of Long-Span Bridges Using the Hybrid of Convolutional Neural Network and Long Short-Term Memory Network
    Fu, Lei
    Tang, Qizhi
    Gao, Peng
    Xin, Jingzhou
    Zhou, Jianting
    ALGORITHMS, 2021, 14 (06)
  • [9] Denoising odontocete echolocation clicks using a hybrid model with convolutional neural network and long short-term memory network
    Yang, Wuyi
    Chang, Wenlei
    Song, Zhongchang
    Niu, Fuqiang
    Wang, Xianyan
    Zhang, Yu
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 154 (02): : 938 - 947
  • [10] A hybrid network combining convolutional neural network and long short-term memory for flashover sound identification of transmission line
    Feng, Bo
    Zhang, Wei
    Xu, Qi
    Liang, Xuecheng
    Xia, Xiaofei
    Xu, Wenping
    Zhang, Yong
    INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2025,