Minimizing the Number of Complete Bipartite Graphs in a Ks-Saturated Graph

被引:0
|
作者
Ergemlidze, Beka [1 ]
Methuku, Abhishek [2 ]
Tait, Michael [3 ]
Timmons, Craig [4 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[2] Univ Birmingham, Sch Math, Birmingham, W Midlands, England
[3] Villanova Univ, Dept Math & Stat, Villanova, PA 19085 USA
[4] Calif State Univ Sacramento, Dept Math & Stat, Sacramento, CA 95819 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
extremal graph theory; graph saturation; MINIMUM; RESTRICTIONS; SIZE;
D O I
10.7151/dmgt.2402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is F -saturated if it does not contain F as a subgraph but the addition of any edge creates a copy of F . We prove that for s >= 3 and t >= 2, the minimum number of copies of K-1,(t) in a K-s-saturated graph is Theta (n(t)(/2)). More precise results are obtained in the case of K-1,K-2, where determining the minimum number of K-1,K-2's in a K-3-saturated graph is related to the existence of Moore graphs. We prove that for s >= 4 and t >= 3, an n-vertex K-s-saturated graph must have at least Cn(t)(/5+8/5) copies of K-2,(t), and we give an upper bound of O(n(t)(/2+3/2)). These results answer a question of Chakraborti and Loh on extremal K-s-saturated graphs that minimize the number of copies of a fixed graph H. General estimates on the number of K-a,K-b's are also obtained, but finding an asymptotic formula for the number K-a,K-b's in a K-s-saturated graph remains open.
引用
收藏
页码:793 / 807
页数:15
相关论文
共 50 条
  • [1] MINIMIZING THE NUMBER OF EDGES IN K (s, t) -SATURATED BIPARTITE GRAPHS\
    Chakraborti, Debsoumya
    Chen, Da Qi
    Hasabnis, Mihir
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 1165 - 1181
  • [2] Ks,t-saturated bipartite graphs
    Gan, Wenying
    Korandi, Daniel
    Sudakov, Benny
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 45 : 12 - 20
  • [3] Complete Graphs and Bipartite Graphs in a Random Graph
    Feng, Lijin
    Barr, Jackson
    2021 5TH INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING (ICVISP 2021), 2021, : 259 - 266
  • [4] Covering a graph by complete bipartite graphs
    Erdos, P
    Pyber, L
    DISCRETE MATHEMATICS, 1997, 170 (1-3) : 249 - 251
  • [5] Packing two bipartite graphs into a complete bipartite graph
    Wang, H
    JOURNAL OF GRAPH THEORY, 1997, 26 (02) : 95 - 104
  • [6] THE SPLITTING NUMBER OF COMPLETE BIPARTITE GRAPHS
    JACKSON, B
    RINGEL, G
    ARCHIV DER MATHEMATIK, 1984, 42 (02) : 178 - 184
  • [7] On generalized graph ideals of complete bipartite graphs
    Imbesi, Maurizio
    La Barbiera, Monica
    Stagliano, Paola Lea
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2017, 32 (02) : 121 - 133
  • [8] The Bipartite-Cylindrical Crossing Number of the Complete Bipartite Graph
    Bernardo Ábrego
    Silvia Fernández-Merchant
    Athena Sparks
    Graphs and Combinatorics, 2020, 36 : 205 - 220
  • [9] The Bipartite-Cylindrical Crossing Number of the Complete Bipartite Graph
    Abrego, Bernardo
    Fernandez-Merchant, Silvia
    Sparks, Athena
    GRAPHS AND COMBINATORICS, 2020, 36 (02) : 205 - 220
  • [10] On the Number of Genus Embeddings of Complete Bipartite Graphs
    Zeling Shao
    Yanpei Liu
    Zhiguo Li
    Graphs and Combinatorics, 2013, 29 : 1909 - 1919