GAN-Based Inversion of Crosshole GPR Data to Characterize Subsurface Structures

被引:6
|
作者
Zhang, Donghao [1 ,2 ,3 ]
Wang, Zhengzheng [1 ,2 ]
Qin, Hui [1 ,2 ,3 ]
Geng, Tiesuo [1 ,2 ,3 ]
Pan, Shengshan [1 ,2 ]
机构
[1] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Civil Engn, Dalian 116024, Peoples R China
[3] Dalian Univ Technol Shenzhen, Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
subsurface structure; crosshole ground-penetrating radar (GPR); inversion; deep learning; generative adversarial network (GAN); finite-difference time domain (FDTD); WAVE-FORM INVERSION; GROUND-PENETRATING RADAR; TOMOGRAPHY;
D O I
10.3390/rs15143650
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The crosshole ground-penetrating radar (GPR) technique is widely used to characterize subsurface structures, yet the interpretation of crosshole GPR data involves solving non-linear and ill-posed inverse problems. In this work, we developed a generative adversarial network (GAN)-based inversion framework to translate crosshole GPR images to their corresponding 2D defect reconstruction images automatically. This approach uses fully connected layers to extract global features from crosshole GPR images and employs a series of cascaded U-Net structures to produce high-resolution defect reconstruction results. The feasibility of the proposed framework was demonstrated on a synthetic crosshole GPR dataset created with the finite-difference time-domain (FDTD) method and real-world data from a field experiment. Our inversion network obtained recognition accuracy of 91.36%, structural similarity index measure (SSIM) of 0.93, and RAscore of 91.77 on the test dataset. Furthermore, comparisons with ray-based tomography and full-waveform inversion (FWI) suggest that the proposed method provides a good balance between inversion accuracy and efficiency and has the best generalization when inverting actual measured crosshole GPR data.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Joint Inversion of Crosshole GPR and Seismic Traveltime Data
    Linde, Niklas
    Doetsch, Joseph A.
    ADVANCES IN NEAR-SURFACE SEISMOLOGY AND GROUND-PENETRATING RADAR, 2010, 15 : 1 - 16
  • [2] URBAN SUBSURFACE MAPPING VIA DEEP LEARNING BASED GPR DATA INVERSION
    Wang, Mengjun
    Hu, Da
    Li, Shuai
    Cai, Jiannan
    2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 2440 - 2450
  • [3] Analysis of Forward Model, Data Type, and Prior Information in Probabilistic Inversion of Crosshole GPR Data
    Qin, Hui
    Wang, Zhengzheng
    Tang, Yu
    Geng, Tiesuo
    REMOTE SENSING, 2021, 13 (02) : 1 - 15
  • [4] Towards 3D Full-waveform Inversion of Crosshole GPR Data
    Mozaffari, A.
    Klotzsche, A.
    He, G.
    Vereecken, H.
    van der Kruk, J.
    Warren, C.
    Giannopoulos, A.
    PROCEEDINGS OF 2016 16TH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR (GPR), 2016,
  • [5] Full-waveform inversion of Crosshole GPR data: Implications for porosity estimation in chalk
    Keskinen, Johanna
    Klotzsche, Anja
    Looms, Majken C.
    Moreau, Julien
    van der Kruk, Jan
    Holliger, Klaus
    Stemmerik, Lars
    Nielsen, Lars
    JOURNAL OF APPLIED GEOPHYSICS, 2017, 140 : 102 - 116
  • [6] Structural joint inversion of time-lapse crosshole ERT and GPR traveltime data
    Doetsch, Joseph
    Linde, Niklas
    Binley, Andrew
    GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [7] Bayesian Markov-Chain-Monte-Carlo Inversion or Time-Lapse Crosshole GPR Data to Characterize the Vadose Zone at the Arrenaes Site, Denmark
    Scholer, Marie
    Irving, James
    Looms, Majken C.
    Nielsen, Lars
    Holliger, Klaus
    VADOSE ZONE JOURNAL, 2012, 11 (04):
  • [8] 2.5D crosshole GPR full-waveform inversion with synthetic and measured data
    Mozaffari, Amirpasha
    Klotzsche, Anja
    Warren, Craig
    He, Guowei
    Giannopoulos, Antonios
    Vereecken, Harry
    van der Kruk, Jan
    GEOPHYSICS, 2020, 85 (04) : H71 - H82
  • [9] Subsurface cylindrical object location and material inversion from GPR data-based online SVR
    Zhou, Hui-Lin
    Wan, Xiao-Ting
    Xiang, Lei
    NONDESTRUCTIVE TESTING AND EVALUATION, 2014, 29 (01) : 52 - 64
  • [10] Cathodoluminescence study of GaN-based film structures
    D. S. Jiang
    U. Jahn
    J. Chen
    D. Y. Li
    S. M. Zhang
    J. J. Zhu
    D. G. Zhao
    Z. S. Liu
    H. Yang
    K. Ploog
    Journal of Materials Science: Materials in Electronics, 2008, 19 : 58 - 63