Elliptic modular invariants of 4-by-4 matrices

被引:0
|
作者
Chien, Mao -Ting [1 ]
Nakazato, Hiroshi [2 ]
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Hirosaki 0368561, Japan
关键词
Modular invariant; Elliptic curve; Numerical range; NUMERICAL RANGES;
D O I
10.1016/j.laa.2022.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n-by -n matrix. The ternary form FA(t, x, y) = det(tIn + xR(A) + y(sic)(A)) characterizes the numerical range of A. For n = 4, we assume that the ternary form FA(t, x, y) is irreducible and the complex projective algebraic curve FA(t, x, y) = 0 is elliptic. We prove that the number of analytic curves composing the real algebraic curve of F-A(t, x, y) = 0 is 2. This result is applied to show that the j-invariant of the elliptic curve F-A(t, x, y) = 0 is greater than or equal to 1. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 66
页数:18
相关论文
共 50 条
  • [1] A family of 4-by-4 Fibonacci matrices
    Filipponi, P
    FIBONACCI QUARTERLY, 1997, 35 (04): : 300 - 308
  • [2] Theta divisor and Abel map for 4-by-4 matrices
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 676 : 296 - 317
  • [3] SINGULAR POINTS OF THE TERNARY POLYNOMIALS ASSOCIATED WITH 4-BY-4 MATRICES
    Chien, Mao-Ting
    Nakazato, Hiroshi
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 755 - 769
  • [4] The cone of class function inequalities for the 4-by-4 positive semidefinite matrices
    Barrett, W
    Hall, HT
    Loewy, R
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 79 : 107 - 130
  • [5] On some 4-by-4 matrices with bi-elliptical numerical ranges
    Geryba, Titas
    Spitkovsky, Ilya M.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05): : 855 - 870
  • [6] NONPARALLEL FLAT PORTIONS ON THE BOUNDARIES OF NUMERICAL RANGES OF 4-BY-4 NILPOTENT MATRICES
    Cox, Mackenzie
    Grewe, Weston M.
    Hochrein, Grace K.
    Patton, Linda J.
    Spitkovsky, Ilya M.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 504 - 523
  • [7] A Complete Characterization of Linear Dependence and Independence for All 4-by-4 Metric Matrices
    Chen, Ray-Ming
    AXIOMS, 2024, 13 (09)
  • [8] Elliptic modular invariants and numerical ranges
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (08): : 1501 - 1519
  • [9] LOCALLY 4-BY-4 GRID GRAPHS
    BLOKHUIS, A
    BROUWER, AE
    JOURNAL OF GRAPH THEORY, 1989, 13 (02) : 229 - 244
  • [10] On the Elliptic Numerical Ranges of 4 x 4 Matrices
    Dong, Chuandai
    Fang, Hualing
    Liu, Xueting
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 4, 2009, : 413 - 416