Predicting Site Energy Usage Intensity Using Machine Learning Models

被引:0
|
作者
Njimbouom, Soualihou Ngnamsie [1 ]
Lee, Kwonwoo [1 ]
Lee, Hyun [1 ,2 ]
Kim, Jeongdong [1 ,2 ,3 ]
机构
[1] Sun Moon Univ, Dept Comp Sci & Elect Engn, Asan 31460, South Korea
[2] Sun Moon Univ, Div Comp Sci & Engn, Asan 31460, South Korea
[3] Sun Moon Univ, Genome Based BioIT Convergence Inst, Asan 31460, South Korea
基金
新加坡国家研究基金会;
关键词
sensor network; energy usage; artificial intelligence; machine learning; BUILDING ENERGY; CLIMATE-CHANGE; NEURAL-NETWORK; RANDOM FOREST; REGRESSION; CLASSIFICATION;
D O I
10.3390/s23010082
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Climate change is a shift in nature yet a devastating phenomenon, mainly caused by human activities, sometimes with the intent to generate usable energy required in humankind's daily life. Addressing this alarming issue requires an urge for energy consumption evaluation. Predicting energy consumption is essential for determining what factors affect a site's energy usage and in turn, making actionable suggestions to reduce wasteful energy consumption. Recently, a rising number of researchers have applied machine learning in various fields, such as wind turbine performance prediction, energy consumption prediction, thermal behavior analysis, and more. In this research study, using data publicly made available by the Women in Data Science (WiDS) Datathon 2022 (contains data on building characteristics and information collected by sensors), after appropriate data preparation, we experimented four main machine learning methods (random forest (RF), gradient boost decision tree (GBDT), support vector regressor (SVR), and decision tree for regression (DT)). The most performant model was selected using evaluation metrics: root mean square error (RMSE) and mean absolute error (MAE). The reported results proved the robustness of the proposed concept in capturing the insight and hidden patterns in the dataset, and effectively predicting the energy usage of buildings.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Predicting Asthma Exacerbations Using Machine Learning Models
    Turcatel, Gianluca
    Xiao, Yi
    Caveney, Scott
    Gnacadja, Gilles
    Kim, Julie
    Molfino, Nestor A.
    ADVANCES IN THERAPY, 2025, 42 (01) : 362 - 374
  • [2] Predicting short-term energy usage in a smart home using hybrid deep learning models
    Ou Ali, Imane Hammou
    Agga, Ali
    Ouassaid, Mohammed
    Maaroufi, Mohamed
    Elrashidi, Ali
    Kotb, Hossam
    Frontiers in Energy Research, 2024, 12
  • [3] Predicting Renewable Energy Investment Using Machine Learning
    Hosein, Govinda
    Hosein, Patrick
    Bahadoorsingh, Sanjay
    Martinez, Robert
    Sharma, Chandrabhan
    ENERGIES, 2020, 13 (17)
  • [4] Predicting the Occurrence of Metabolic Syndrome Using Machine Learning Models
    Trigka, Maria
    Dritsas, Elias
    Lahoz-Beltra, Rafael
    Zhang, Yudong
    COMPUTATION, 2023, 11 (09)
  • [5] PREDICTING HEALTHCARE COSTS OF DIABETES USING MACHINE LEARNING MODELS
    Gonzalez Rodriguez, J.
    Pinzon Espitia, O. L.
    Franco, C.
    Augusto, V
    VALUE IN HEALTH, 2019, 22 : S575 - S575
  • [6] Predicting maternal risk level using machine learning models
    Al Mashrafi, Sulaiman Salim
    Tafakori, Laleh
    Abdollahian, Mali
    BMC PREGNANCY AND CHILDBIRTH, 2024, 24 (01)
  • [8] Predicting brain tumor presence using machine learning models
    Huang, Weiguo
    Dai, Zhenhua
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (01)
  • [9] Comparison of Predicting Regional Mortalities Using Machine Learning Models
    Caglar, Oguzhan
    Ozen, Figen
    ARTIFICIAL INTELLIGENCE FOR INTERNET OF THINGS (IOT) AND HEALTH SYSTEMS OPERABILITY, IOTHIC 2023, 2024, 8 : 59 - 72
  • [10] Predicting Web Survey Breakoffs Using Machine Learning Models
    Chen, Zeming
    Cernat, Alexandru
    Shlomo, Natalie
    SOCIAL SCIENCE COMPUTER REVIEW, 2023, 41 (02) : 573 - 591