Underapproximation by Egyptian fractions

被引:3
|
作者
Nathanson, Melvyn B. [1 ]
机构
[1] CUNY Lehman Coll, Dept Math, Bronx, NY 10468 USA
关键词
Egyptian fractions; Underapproximation; Sylvester?s sequence; Muirhead inequality; Greedy algorithm;
D O I
10.1016/j.jnt.2022.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 0 < theta <= 1. An increasing sequence (xi)ni=1 of positive integers is an n-term Egyptian underapproximation sequence of theta if Sigma n xi < theta. A greedy algorithm constructs an n-1 i=1 term underapproximation sequence of theta. For some but not all numbers theta, the greedy algorithm gives a unique best n-term underapproximation sequence for all n. An infinite set of rational numbers is constructed for which the greedy underapproximations are best, and numbers for which the greedy algorithm is not best are also studied.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:208 / 234
页数:27
相关论文
共 50 条
  • [1] A threshold for the best two-term underapproximation by Egyptian fractions
    Chu
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (02): : 350 - 375
  • [2] EGYPTIAN FRACTIONS
    VOSE, MD
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (JAN) : 21 - 24
  • [3] EGYPTIAN FRACTIONS
    MONTGOMERY, PL
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (03): : 224 - 224
  • [4] Denser Egyptian fractions
    Martin, G
    ACTA ARITHMETICA, 2000, 95 (03) : 231 - 260
  • [5] Egyptian fractions with restrictions
    Chen, Yong-Gao
    Elsholtz, Christian
    Jiang, Li-Li
    ACTA ARITHMETICA, 2012, 154 (02) : 109 - 123
  • [6] Dense Egyptian fractions
    Martin, G
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (09) : 3641 - 3657
  • [7] ON REPRESENTATIONS BY EGYPTIAN FRACTIONS
    Ambro, Florin
    Barcau, Mugurel
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 60 (03): : 331 - 336
  • [8] Binary Egyptian fractions
    Croot, ES
    Dobbs, DE
    Friedlander, JB
    Hetzel, AJ
    Pappalardi, F
    JOURNAL OF NUMBER THEORY, 2000, 84 (01) : 63 - 79
  • [9] DENOMINATORS OF EGYPTIAN FRACTIONS
    YOKOTA, H
    JOURNAL OF NUMBER THEORY, 1988, 28 (03) : 258 - 271
  • [10] Egyptian Fractions Revisited
    Kosheleva, Olga
    Kreinovich, Vladik
    INFORMATICS IN EDUCATION, 2009, 8 (01): : 35 - 48