The Lp Chord Minkowski Problem for Negative p

被引:0
|
作者
Li, Yuanyuan [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
关键词
Chord integral; <mml:msub>Lp</mml:msub> chord measure; <mml:msub>Lp</mml:msub> chord Minkowski problem; Monge- Ampere equation; 49J35; 35A15; FIREY THEORY; CURVATURE; CURVES;
D O I
10.1007/s12220-023-01528-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we solve the Lp chord Minkowski problem in the case of discrete measures whose supports are in general position for p<0 and q>0. As for general Borel measure, we also give a proof but requiring -n<p<0 and n+1>q1. The Lp chord Minkowski problem was recently posed by Lutwak, Xi, Yang, and Zhang, which seeks to determine the necessary and sufficient conditions for a given finite Borel measure, such that it is the Lp chord measure of a convex body. Moreover, The Lp chord Minkowski problem includes the chord Minkowski problem and the Lp Minkowski problem.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] The Lp chord Minkowski problem
    Xi, Dongmeng
    Yang, Deane
    Zhang, Gaoyong
    Zhao, Yiming
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [2] The Lp chord Minkowski problem in a critical interval
    Guo, Lujun
    Xi, Dongmeng
    Zhao, Yiming
    MATHEMATISCHE ANNALEN, 2023, : 3123 - 3162
  • [3] Nonuniqueness of solutions to the Lp chord Minkowski problem
    Li, Yuanyuan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (04)
  • [4] The chord Gauss curvature flow and its Lp chord Minkowski problem
    Hu, Jinrong
    Huang, Yong
    Lu, Jian
    Wang, Sinan
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (01) : 161 - 179
  • [5] THE GAUSSIAN CHORD MINKOWSKI PROBLEM
    Huang, Yong
    Qin, Lei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (02): : 930 - 944
  • [6] The Lp Minkowski Problem for Polytopes for p &lt; 0
    Zhu, Guangxian
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (04) : 1333 - 1350
  • [7] The Lp-Minkowski problem for -n < p < 1
    Bianchi, Gabriele
    Boroczky, Karoly J.
    Colesanti, Andrea
    Yang, Deane
    ADVANCES IN MATHEMATICS, 2019, 341 : 493 - 535
  • [8] THE Lp MINKOWSKI PROBLEM FOR THE ELECTROSTATIC p-CAPACITY
    Zou, Du
    Xiong, Ge
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 116 (03) : 555 - 596
  • [9] The discrete Orlicz chord Minkowski problem
    Li, Suwei
    Jin, Hailin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025, 68 (01): : 154 - 165
  • [10] The Lp Minkowski Problem for the Electrostatic p-capacity for p ≥ n
    Lu, Xinbao
    Xiong, G. E.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (05) : 1869 - 1901