High-quality all-inorganic CsPbI2Br thin films derived from phase-pure intermediate for efficient wide-bandgap perovskite solar cells

被引:12
|
作者
Yu, Fan [1 ]
Liu, Jian [1 ,2 ]
Xu, Pan [1 ]
Huang, Jiahao [1 ]
Li, Cheng-Hui [1 ]
Zheng, You-Xuan [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Coordinat Chem, Nanjing 210023, Peoples R China
[2] Nanjing Forestry Univ, Coll Chem Engn, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat Fo, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase segregation and phase transition; Intermediate engineering; Wide-bandgap solar cells; CsPbI2Br; LEAD HALIDE PEROVSKITES; INTRINSIC DEFECTS; TEMPERATURE; PERFORMANCE; STABILITY;
D O I
10.1016/j.jssc.2022.123728
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Mixed-halide alloying inorganic perovskite CsPbI2Br with prominent thermal stability has been considered as a promising candidate for wide-bandgap solar cells. However, the thermally driving coordination configuration evolution and phase transition during the crystallization of the perovskite CsPbI2Br were still not understood in depth, which was not conducive to the controllable preparation of high-quality CsPbI2Br thin films and the enhancement of photovoltaic performance. In this study, the phase segregation and unfavorable phase transition during the crystallization of CsPbI2Br that lead to the low quality of the perovskite thin films were investigated systematically. Moreover, the existing issue was overcome through intermediate engineering by introducing volatile organic amine acetates. Specially, the introduction of 0.5 equiv. of formamidine acetate (FAAc) in the precursor of CsPbI2Br generated a phase-pure intermediate, which facilitated the crystallization of high-quality CsPbI2Br perovskite thin films, and thus improved the device performance. As a result, the champion device achieved a power conversion efficiency (PCE) of 16.36%.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Efficient and Stable Wide-Bandgap Perovskite Solar Cells Derived from a Thermodynamic Phase-Pure Intermediate
    Yu, Fan
    Liu, Jian
    Huang, Jiahao
    Xu, Pan
    Li, Cheng-Hui
    Zheng, You-Xuan
    Tan, Hairen
    Zuo, Jing-Lin
    SOLAR RRL, 2022, 6 (02)
  • [2] Niobium Incorporation into CsPbI2Br for Stable and Efficient All-Inorganic Perovskite Solar Cells
    Guo, Zhanglin
    Zhao, Shuai
    Liu, Anmin
    Kamata, Yusuke
    Teo, Siowhwa
    Yang, Shuzhang
    Xu, Zhenhua
    Hayase, Shuzi
    Ma, Tingli
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (22) : 19994 - 20003
  • [3] Reducing Defects of All-Inorganic ?-CsPbI2Br Thin Films by Ethylammonium Bromide Additives for Efficient Perovskite Solar Cells
    Patil, Jyoti, V
    Mali, Sawanta S.
    Hong, Chang Kook
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (22) : 25576 - 25583
  • [4] All-Inorganic CsPbI2Br Perovskite Solar Cells with High Efficiency Exceeding 13%
    Liu, Chong
    Li, Wenzhe
    Zhang, Cuiling
    Ma, Yunping
    Fan, Jiandong
    Mai, Yaohua
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (11) : 3825 - 3828
  • [5] All-Inorganic CsPbI2Br Perovskite Solar Cells: Recent Developments and Challenges
    Ullah, Saad
    Wang, Jiaming
    Yang, Peixin
    Liu, Linlin
    Li, Yuqiao
    Yang, Shi-E.
    Xia, Tianyu
    Guo, Haizhong
    Chen, Yongsheng
    ENERGY TECHNOLOGY, 2021, 9 (12)
  • [6] Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells
    Mengfei Zhu
    Lina Qin
    Yuren Xia
    Junchuan Liang
    Yaoda Wang
    Daocheng Hong
    Yuxi Tian
    Zuoxiu Tie
    Zhong Jin
    Nano Research, 2024, 17 : 1508 - 1515
  • [7] Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells
    Zhu, Mengfei
    Qin, Lina
    Xia, Yuren
    Liang, Junchuan
    Wang, Yaoda
    Hong, Daocheng
    Tian, Yuxi
    Tie, Zuoxiu
    Jin, Zhong
    NANO RESEARCH, 2024, 17 (03) : 1508 - 1515
  • [8] High performance all-inorganic CsPbI2Br perovskite solar cells with low energy losses
    Yang, Yifan
    Wang, Tianyi
    Zhang, Yu
    Zhang, Xiaohan
    Li, Na
    Wang, Peng
    Qian, Yinping
    Rong, Qikun
    Shui, Lingling
    Zhou, Guofu
    Nian, Li
    SOLAR ENERGY, 2020, 196 : 22 - 26
  • [9] Dual Interfacial Engineering Enables Efficient and Reproducible CsPbI2Br All-Inorganic Perovskite Solar Cells
    Wang, Yao
    Duan, Chenghao
    Zhang, Xuliang
    Rujisamphan, Nopporn
    Liu, Yang
    Li, Youyong
    Yuan, Jianyu
    Ma, Wanli
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (28) : 31659 - 31666
  • [10] Precursor Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with 14.78% Efficiency
    Yin, Guannan
    Zhao, Huan
    Jiang, Hong
    Yuan, Shihao
    Niu, Tianqi
    Zhao, Kui
    Liu, Zhike
    Liu, Shengzhong
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (39)