Demand Forecasting for Food Production Using Machine Learning Algorithms: A Case Study of University Refectory

被引:3
|
作者
Aci, Mehmet [1 ]
Yergok, Derya [1 ]
机构
[1] Mersin Univ, Fac Engn, Dept Environm Engn, Ciftlikkoy Campus, TR-33343 Mersin, Turkiye
来源
TEHNICKI VJESNIK-TECHNICAL GAZETTE | 2023年 / 30卷 / 06期
关键词
boosting; decision support systems; demand forecasting; machine learning; prediction algorithms; NEURAL-NETWORK; GENERATION; SALES; TREE;
D O I
10.17559/TV-20230117000232
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate food demand forecasting is one of the critical aspects of successfully managing restaurants, cafeterias, canteens, and refectories. This paper aims to develop demand forecasting models for a university refectory. Our study focused on the development of Machine Learning-based forecasting models which take into account the calendar effect and meal ingredients to predict the heavy demand for food within a limited timeframe (e.g., lunch) and without pre-booking. We have developed eighteen prediction models gathered under five main techniques. Three Artificial Neural Network models (i.e., Feed Forward, Function Fitting, and Cascade Forward), four Gauss Process Regression models (i.e., Rational Quadratic, Squared Exponential, Matern 5/2, and Exponential), six Support Vector Regression models (i.e., Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, and Coarse Gaussian), three Regression Tree models (i.e., Fine, Medium, and Coarse), two Ensemble Decision Tree (EDT) models (i.e., Boosted and Bagged) and one Linear Regression model were applied. When evaluated in terms of method diversity, prediction performance, and application area, to the best of our knowledge, this study offers a different contribution from previous studies. The EDT Boosted model obtained the best prediction performance (i.e., Mean Squared Error = 0,51, Mean Absolute Erro = 0,50, and R = 0,96).
引用
收藏
页码:1683 / 1691
页数:9
相关论文
共 50 条
  • [1] Forecasting District Heating Demand using Machine Learning Algorithms
    Saloux, Etienne
    Candanedo, Jose A.
    16TH INTERNATIONAL SYMPOSIUM ON DISTRICT HEATING AND COOLING, DHC2018, 2018, 149 : 59 - 68
  • [2] Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms
    Saglam, Mustafa
    Spataru, Catalina
    Karaman, Omer Ali
    ENERGIES, 2023, 16 (11)
  • [3] Water Demand Forecasting Using Machine Learning and Time Series Algorithms
    Ibrahim, Tarek
    Omar, Yasser
    Maghraby, Fahima A.
    2020 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2020, : 325 - 329
  • [4] Electricity demand forecasting with hybrid classical statistical and machine learning algorithms: Case study of Ukraine
    Grandon, T. Gonzalez
    Schwenzer, J.
    Steens, T.
    Breuing, J.
    APPLIED ENERGY, 2024, 355
  • [5] Demand Forecasting using Machine Learning
    Pawar, Piyush
    Hatcher, Solomon
    Jololian, Leon
    Anthony, Thomas
    2019 IEEE SOUTHEASTCON, 2019,
  • [6] Forecasting demand in the residential construction industry using machine learning algorithms in Jordan
    Sammour, Farouq
    Alkailani, Heba
    Sweis, Ghaleb J.
    Sweis, Rateb J.
    Maaitah, Wasan
    Alashkar, Abdulla
    CONSTRUCTION INNOVATION-ENGLAND, 2024, 24 (05): : 1228 - 1254
  • [7] Evaluation of electrical load demand forecasting using various machine learning algorithms
    Jain, Akanksha
    Gupta, S. C.
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [8] Demand Forecasting for Textile Products Using Statistical Analysis and Machine Learning Algorithms
    Lorente-Leyva, Eandro L.
    Alemany, M. M. E.
    Peluffo-Ordonez, Diego H.
    Araujo, Roberth A.
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 181 - 194
  • [9] Forecasting Ambulance Demand using Machine Learning: A Case Study from Oslo, Norway
    Hermansen, Anna Haugsbo
    Mengshoel, Ole Jakob
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [10] Forecasting solar energy production: A comparative study of machine learning algorithms
    Ledmaoui, Younes
    El Maghraoui, Adila
    El Aroussi, Mohamed
    Saadane, Rachid
    Chebak, Ahmed
    Chehri, Abdellah
    ENERGY REPORTS, 2023, 10 : 1004 - 1012