Some new inequalities of Hermite-Hadamard type via Katugampola fractional integral

被引:1
|
作者
Butt, Saad Ihsan [1 ]
Bayraktar, Bahtiyar [2 ]
Valdes, Juan E. Napoles [3 ,4 ]
机构
[1] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
[2] Bursa Uludag Univ, Gorukle Campus, Bursa, Turkiye
[3] UNNE, FaCENA, Ave Libertad 5450, RA-3400 Corrientes, Argentina
[4] UTN FRRE, French 414, RA-3500 Resistencia, Chaco, Argentina
来源
关键词
Hermite-Hadamard inequality; F-convex function; Young inequality; Holder's inequality; power mean inequality; Katugampola fractional integral; CONVEX-FUNCTIONS; DERIVATIVES;
D O I
10.52280/pujm.2023.55(7-8)02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we present the midpoint and trapezoid inequalities for an F-convex function in terms of Katugampola fractional integral operators. We obtained new results involving Katugampola-fractional integral operators for differentiable mapping Phi whose second derivatives in the absolute values are F-convex. Also established connections between our results with several renowned results in literature. Results proved in this paper may stimulate further research in this area.
引用
收藏
页码:269 / 290
页数:22
相关论文
共 50 条
  • [1] ON HERMITE-HADAMARD TYPE INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Yaldiz, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 773 - 785
  • [2] New integral inequalities of Hermite-Hadamard type via the Katugampola fractional integrals for strongly η-quasiconvex functions
    Kermausuor, Seth
    Nwaeze, Eze R.
    JOURNAL OF ANALYSIS, 2021, 29 (03): : 633 - 647
  • [3] HERMITE-HADAMARD TYPE INEQUALITIES FOR KATUGAMPOLA FRACTIONAL INTEGRALS
    Wang, Shu-Hong
    Hai, Xu-Ran
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 1650 - 1667
  • [4] Generalized fractional inequalities of the Hermite-Hadamard type via new Katugampola generalized fractional integrals
    Omaba, M. E.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2022, 14 (02) : 475 - 484
  • [5] SOME NEW HERMITE-HADAMARD'S TYPE FRACTIONAL INTEGRAL INEQUALITIES
    Dragomir, Sever S.
    Bhatti, Muhammad Iqbal
    Iqbal, Muhammad
    Muddassar, Muhammad
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (04) : 655 - 661
  • [6] On Hermite-Hadamard Type Inequalities Via Fractional Integral Operators
    Tunc, Tuba
    Sarikaya, Mehmet Zeki
    FILOMAT, 2019, 33 (03) : 837 - 854
  • [7] New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals
    Almutairi, Ohud
    Kilicman, Adem
    SYMMETRY-BASEL, 2020, 12 (04):
  • [8] IMPROVED HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Sanli, Zeynep
    Kunt, Mehmet
    Koroglu, Tuncay
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (02): : 461 - 474
  • [9] HERMITE-HADAMARD TYPE INEQUALITIES FOR HARMONICALLY CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Mumcu, Ilker
    Set, Erhan
    Akdemir, Ahmet Ocak
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) : 409 - 424
  • [10] Some fractional integral inequalities of type Hermite-Hadamard through convexity
    Qaisar, Shahid
    Nasir, Jamshed
    Butt, Saad Ihsan
    Asma, Asma
    Ahmad, Farooq
    Iqbal, Muhammad
    Hussain, Sajjad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)