Fast transport simulations with higher-fidelity surrogate models for ITER

被引:8
|
作者
Citrin, J. [1 ]
Trochim, P. [2 ,4 ]
Goerler, T. [3 ]
Pfau, D. [2 ]
van de Plassche, K. L. [1 ]
Jenko, F. [3 ]
机构
[1] DIFFER Dutch Inst Fundamental Energy Res, NL-5612 AJ Eindhoven, Netherlands
[2] DeepMind, London N1C 4AG, England
[3] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[4] Meta Platforms Ltd, London W1T 1HQ, England
关键词
JET;
D O I
10.1063/5.0136752
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A fast and accurate turbulence transport model based on quasilinear gyrokinetics is developed. The model consists of a set of neural networks trained on a bespoke quasilinear GENE dataset, with a saturation rule calibrated to dedicated nonlinear simulations. The resultant neural network is approximately eight orders of magnitude faster than the original GENE quasilinear calculations. ITER predictions with the new model project a fusion gain in line with ITER targets. While the dataset is currently limited to the ITER baseline regime, this approach illustrates a pathway to develop reduced-order turbulence models both faster and more accurate than the current state-of-the-art.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Higher-Fidelity Frugal Quantile Estimator
    Yazidi, Anis
    Hammer, Hugo Lewi
    Oommen, B. John
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2017, 2017, 10604 : 76 - 86
  • [2] Generating Higher-Fidelity Synthetic Datasets with Privacy Guarantees
    Triastcyn, Aleksei
    Faltings, Boi
    ALGORITHMS, 2022, 15 (07)
  • [3] CoDi: Conditional Diffusion Distillation for Higher-Fidelity and Faster Image Generation
    Mei, Kangfu
    Delbracio, Mauricio
    Talebi, Hossein
    Tu, Zhengzhong
    Patel, Vishal M.
    Milanfar, Peyman
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 9048 - 9058
  • [4] A healthy dose of chaos: Using fractal frameworks for engineering higher-fidelity biomedical systems
    Korolj, Anastasia
    Wu, Hau-Tieng
    Radisic, Milica
    BIOMATERIALS, 2019, 219
  • [5] Higher-Fidelity Frugal and Accurate Quantile Estimation Using a Novel Incremental Discretized Paradigm
    Yazidi, Anis
    Hammer, Hugo
    Oommen, B. John
    IEEE ACCESS, 2018, 6 : 24362 - 24374
  • [6] Effects of Higher-Fidelity Route Definition in Modeling Fleet Development Influenced by Airport Congestion
    Michelmann, Johannes
    Hornung, Mirko
    AIAA SCITECH 2024 FORUM, 2024,
  • [7] ITER shape controller and transport simulations
    Casper, T. A.
    Meyer, W. H.
    Pearlstein, L. D.
    Portone, A.
    FUSION ENGINEERING AND DESIGN, 2008, 83 (2-3) : 552 - 556
  • [8] On benchmarking of simulations of particle transport in ITER
    Na, Yong-Su
    Koechl, F.
    Polevoi, A. R.
    Byun, C. S.
    Na, D. H.
    Seo, J.
    Felici, F.
    Fukuyama, A.
    Garcia, J.
    Hayashi, N.
    Kessel, C. E.
    Luce, T.
    Park, J. M.
    Poli, F.
    Sauter, O.
    Sips, A. C. C.
    Strand, P.
    Teplukhina, A.
    Voitsekhovitch, I
    Wisitsorasak, A.
    Yuan, X.
    NUCLEAR FUSION, 2019, 59 (07)
  • [9] Multi-Objective Design of Antennas Using Variable-Fidelity Simulations and Surrogate Models
    Koziel, Slawomir
    Ogurtsov, Stanislav
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (12) : 5931 - 5939
  • [10] Comparison of Low- and Higher-Fidelity Simulation to Train and Assess Pharmacy Students' Injection Technique
    Skoy, Elizabeth T.
    Eukel, Heidi N.
    Frenzel, Jeanne E.
    AMERICAN JOURNAL OF PHARMACEUTICAL EDUCATION, 2013, 77 (02)