Digital Mapping of Soil Properties Using Ensemble Machine Learning Approaches in an Agricultural Lowland Area of Lombardy, Italy

被引:11
|
作者
Adeniyi, Odunayo David [1 ]
Brenning, Alexander [2 ]
Bernini, Alice [1 ]
Brenna, Stefano [3 ]
Maerker, Michael [1 ,4 ]
机构
[1] Univ Pavia, Dept Earth & Environm Sci, I-27100 Pavia, Italy
[2] Friedrich Schiller Univ Jena, Dept Geog, D-07743 Jena, Germany
[3] Reg Lombardia Milan, ERSAF, I-20124 Milan, Italy
[4] Leibniz Ctr Agr Landscape Res, Working Grp Soil Eros & Feedbacks, D-15374 Muncheberg, Germany
关键词
digital soil mapping; ensemble machine learning; stacking model; terrain attributes; Lombardy lowland; SPATIAL PREDICTION; TERRAIN ATTRIBUTES; SEMIARID REGION; RANDOM FOREST; TEXTURE; UNCERTAINTY; CLASSIFIERS; RESOLUTION; FRACTIONS; COUNTRY;
D O I
10.3390/land12020494
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sustainable agricultural landscape management needs reliable and accurate soil maps and updated geospatial soil information. Recently, machine learning (ML) models have commonly been used in digital soil mapping, together with limited data, for various types of landscapes. In this study, we tested linear and nonlinear ML models in predicting and mapping soil properties in an agricultural lowland landscape of Lombardy region, Italy. We further evaluated the ability of an ensemble learning model, based on a stacking approach, to predict the spatial variation of soil properties, such as sand, silt, and clay contents, soil organic carbon content, pH, and topsoil depth. Therefore, we combined the predictions of the base learners (ML models) with two meta-learners. Prediction accuracies were assessed using a nested cross-validation procedure. Nonetheless, the nonlinear single models generally performed well, with RF having the best results; the stacking models did not outperform all the individual base learners. The most important topographic predictors of the soil properties were vertical distance to channel network and channel network base level. The results yield valuable information for sustainable land use in an area with a particular soil water cycle, as well as for future climate and socioeconomic changes influencing water content, soil pollution dynamics, and food security.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Spatial prediction of soil organic carbon: Combining machine learning with residual kriging in an agricultural lowland area (Lombardy region, Italy)
    Adeniyi, Odunayo David
    Brenning, Alexander
    Maerker, Michael
    GEODERMA, 2024, 448
  • [2] Landslide susceptibility mapping using ensemble machine learning methods: a case study in Lombardy, Northern Italy
    Xu, Qiongjie
    Yordanov, Vasil
    Amici, Lorenzo
    Brovelli, Maria Antonia
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [3] Digital Soil Mapping Using Machine Learning Algorithms in a Tropical Mountainous Area
    Meier, Martin
    de Souza, Eliana
    Francelino, Marcio Rocha
    Fernandes Filho, Elpidio Inacio
    Goncalves Reynaud Schaefer, Carlos Ernesto
    REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2018, 42 : 1 - 22
  • [4] Digital mapping of soil biological properties and wheat yield using remotely sensed, soil chemical data and machine learning approaches
    Mahjenabadi, Vahid Alah Jahandideh
    Mousavi, Seyed Roohollah
    Rahmani, Asghar
    Karami, Alidad
    Rahmani, Hadi Asadi
    Khavazi, Kazem
    Rezaei, Meisam
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 197
  • [5] Explorative analysis of varying spatial resolutions on a soil type classification model and it 's transferability in an agricultural lowland area of Lombardy, Italy
    Adeniyi, Odunayo David
    Maerker, Michael
    GEODERMA REGIONAL, 2024, 37
  • [6] Digital mapping of soil attributes using machine learning
    da Matta Campbell, Patricia Morais
    Francelino, March Rocha
    Fernandes Filho, Elpidio Inacio
    Rocha, Pablo de Azevedo
    de Azevedo, Bruno Campbell
    REVISTA CIENCIA AGRONOMICA, 2019, 50 (04): : 519 - 528
  • [7] A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas
    Adeniyi, Odunayo David
    Bature, Hauwa
    Mearker, Michael
    LAND, 2024, 13 (03)
  • [8] Digital soil mapping for soil types using machine learning approaches at the landscape scale in the arid regions of Iran
    Manteghi, Shaho
    Moravej, Kamran
    Mousavi, Seyed Roohollah
    Delavar, Mohammad Amir
    Mastinu, Andrea
    ADVANCES IN SPACE RESEARCH, 2024, 74 (01) : 1 - 16
  • [9] Digital mapping of soil physical and mechanical properties using machine learning at the watershed scale
    Mohammad Sajjad GHAVAMI
    Shamsollah AYOUBI
    Mohammad Reza MOSADDEGHI
    Salman Naimi
    JournalofMountainScience, 2023, 20 (10) : 2975 - 2992
  • [10] Digital mapping of soil physical and mechanical properties using machine learning at the watershed scale
    Ghavami, Mohammad Sajjad
    Ayoubi, Shamsollah
    Mosaddeghi, Mohammad Reza
    Naimi, Salman
    JOURNAL OF MOUNTAIN SCIENCE, 2023, 20 (10) : 2975 - 2992