Behavior and design of steel-UHPC composite beams subjected to negative moment

被引:5
|
作者
Zhao, Qiu [1 ]
Xiao, Feng [1 ]
Nie, Yu [2 ]
Yang, Yao-Feng [1 ]
Fang, Xiang-Ming [3 ]
机构
[1] Fuzhou Univ, Sch Civil Engn, Fuzhou 350116, Fujian, Peoples R China
[2] Urban & Rural Dev Bur Jinan Dist, Fuzhou 350116, Fujian, Peoples R China
[3] Fujian Commun Planning & Design Inst Co Ltd, Fuzhou 350004, Fujian, Peoples R China
关键词
Negative bending moment; Ultra-high performance concrete (UHPC); Crack width; Flexural capacity; Composite beams; FLEXURAL BEHAVIOR;
D O I
10.1016/j.istruc.2023.105183
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To improve the crack resistance of concrete deck slabs of steel-concrete composite beams in the negative moment regions, Normal Concrete (NC) and Ultra-high Performance Concrete (UHPC) were respectively used to cast the deck slab to investigate the effects of different slab materials on the failure modes, crack characteristics and flexural performance. The flexural performance tests under negative bending moment were conducted, and the impact of different slab materials on the mechanical performance of the composite beams were analyzed using the numerical simulation method verified by the tests. The method of calculating the ultimate flexural capacity of steel-UHPC composite beam, which considered the material micromechanics mechanism such as fiber distribution, orientation, burial depth and interfacial bond strength, was proposed based on the simplified plasticity theory and were verified with existing method by the test results of related literature. The results show that the force characteristics of the two composite beams were similar, and the failure modes were both flexural failures. Compared with the steel-concrete composite beam, the cracks of the steel-UHPC composite beam were more evenly distributed and narrower, with larger crack distribution spacing and fewer secondary cracks. The cracking resistance of composite beam can be effectively improved by using UHPC slab, and the flexural capacity improved slightly. The cracking load of the deck slab of the steel-UHPC composite beam was improved by 500%, the corresponding load when the crack width reached 0.2 mm was improved by 37.5%, and the ductility and ultimate flexural capacity were improved by 30% and 5 %. In addition, the ultimate flexural capacity of steelUHPC composite beam should consider the tensile contribution of UHPC, and the proposed calculation method is suitable for steel-UHPC composite beam with different UHPC mix ratios.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Behavior and reasonable design of steel-UHPC composite beams under negative moment
    Zhao, Qiu
    Xiao, Feng
    Zhang, Hao
    Fang, Xiangming
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2024, 212
  • [2] Flexural behavior of steel-UHPC composite beams with different connectors in negative moment
    Sun, Guorui
    Shan, Baohua
    Kang, Jiayuan
    Zhou, Guangchun
    Journal of Constructional Steel Research, 2024, 216
  • [3] Flexural behavior of steel-UHPC composite beams with different connectors in negative moment
    Sun, Guorui
    Shan, Baohua
    Kang, Jiayuan
    Zhou, Guangchun
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2024, 216
  • [4] Comparative study on flexural behavior of steel-UHPC composite beams and steel-ordinary concrete composite beams in the negative moment zone
    Xu, Bo
    Liu, Yongjian
    Zhu, Weiqing
    STRUCTURES, 2023, 57
  • [5] Experimental Study on the Flexural Behavior of Steel-UHPC Composite Beams with Waffle Slab in Negative Moment Regions
    Zhu J.-S.
    Wang X.-C.
    Ding J.-N.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2021, 34 (08): : 234 - 245
  • [6] Experimental and Numerical Studies on the Negative Flexural Behavior of Steel-UHPC Composite Beams
    Liu, Xinhua
    Zhang, Jianren
    Cheng, Zihan
    Ye, Meng
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [7] Flexural Behavior of Steel-UHPC Composite Beams with Waffle Slabs under Hogging Moment
    Zhu, Jinsong
    Wang, Xiuce
    Ding, Jingnan
    Wang, Cong
    JOURNAL OF BRIDGE ENGINEERING, 2022, 27 (11)
  • [8] Flexural responses of steel-UHPC composite beams under hogging moment
    Zhang, Yang
    Cai, Shukun
    Zhu, Yanping
    Fan, Liang
    Shao, Xudong
    ENGINEERING STRUCTURES, 2020, 206
  • [9] Flexural and shear behavior of steel-UHPC composite beams: a review
    Benedetty, Carlos Alberto
    dos Santos, Vinicius Brother
    Krahl, Pablo Augusto
    Rossi, Alexandre
    Silva, Flavio de Andrade
    Cardoso, Daniel Carlos Taissum
    Martins, Carlos Humberto
    ENGINEERING STRUCTURES, 2023, 293
  • [10] Investigation on flexural behavior of steel-UHPC composite beams with steel shear keys
    Ge, Wenjie
    Zhang, Zhiwen
    Ashour, Ashraf
    Jiang, Hongbo
    Liu, Yan
    Li, Shengcai
    Cao, Dafu
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2023, 211