Graphical impedance-matching method for a superconducting parametric amplifier

被引:2
|
作者
He, Kaiyong [1 ]
Yu, Qing [1 ]
Yang, Liangliang [1 ]
He, Yongcheng [1 ]
Liu, Jianshe [1 ]
Chen, Wei [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, Sch Integrated Circuits, Lab Superconducting Quantum Informat Proc, Beijing 100084, Peoples R China
[2] Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Beijing Innovat Ctr Future Chips, Beijing 100084, Peoples R China
关键词
NOISE;
D O I
10.1103/PhysRevApplied.21.034055
中图分类号
O59 [应用物理学];
学科分类号
摘要
This work proposes a graphical impedance-matching method for superconducting parametric amplifiers with quantum-limited noise performance using a modified Smith chart. It enables one to quickly apply the impedance-matching methods in microwave engineering to the design of parametric amplifiers. When the matching networks are composed of resonators and their equivalents, the matching of a parametric amplifier can be reduced to that of a negative-resistance amplifier, which is generally invalid due to the connection between the signal-frequency and idler-frequency networks introduced by the parametrically modulated component. Several examples are presented to demonstrate the effective and efficient matching of parametric amplifiers using this method, circumventing the need for complex calculations. This method also offers intuitive insight into how variations in pump strength and bias affect the amplification behavior of the circuit, which is useful in characterizing the parametric amplifier and finding the optimal operating state.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Clean carbon nanotubes coupled to superconducting impedance-matching circuits
    Ranjan, V.
    Puebla-Hellmann, G.
    Jung, M.
    Hasler, T.
    Nunnenkamp, A.
    Muoth, M.
    Hierold, C.
    Wallraff, A.
    Schoenenberger, C.
    NATURE COMMUNICATIONS, 2015, 6
  • [2] Clean carbon nanotubes coupled to superconducting impedance-matching circuits
    V. Ranjan
    G. Puebla-Hellmann
    M. Jung
    T. Hasler
    A. Nunnenkamp
    M. Muoth
    C. Hierold
    A. Wallraff
    C. Schönenberger
    Nature Communications, 6
  • [3] Synthesis of impedance-matching networks for RF-power amplifier applications
    Kim, NT
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 39 (03) : 207 - 211
  • [5] Resolving Photon Numbers Using a Superconducting Nanowire with Impedance-Matching Taper
    Zhu, Di
    Colangelo, Marco
    Chen, Changchen
    Korzh, Boris A.
    Wong, Franco N. C.
    Shaw, Matthew D.
    Berggren, Karl K.
    NANO LETTERS, 2020, 20 (05) : 3858 - 3863
  • [6] Tunable Impedance-Matching Filters
    Estrada, Jose Antonio
    Johannes, Seth
    Psychogiou, Dimitra
    Popovic, Zoya
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2021, 31 (08) : 993 - 996
  • [7] Correct Impedance-Matching Limitations
    Hansen, R. C.
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2009, 51 (03) : 122 - 124
  • [8] Design of impedance-matching networks for microwave and millimeter-wave amplifier applications
    Kim, NT
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2000, 27 (02) : 109 - 113
  • [9] Noncontact PIM Measurement Method Using Partial Impedance-Matching Method
    Saito, Kensuke
    Ishibashi, Daijiro
    Kuga, Nobuhiro
    IEICE TRANSACTIONS ON ELECTRONICS, 2013, E96C (09) : 1151 - 1154
  • [10] Superconducting nanowire single-photon detector with integrated impedance-matching taper
    Zhu, Di
    Colangelo, Marco
    Korzh, Boris A.
    Zhao, Qing-Yuan
    Frasca, Simone
    Dane, Andrew E.
    Velasco, Angel E.
    Beyer, Andrew D.
    Allmaras, Jason P.
    Ramirez, Edward
    Strickland, William J.
    Santavicca, Daniel F.
    Shaw, Matthew D.
    Berggren, Karl K.
    APPLIED PHYSICS LETTERS, 2019, 114 (04)